{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T17:30:13Z","timestamp":1720719013243},"reference-count":13,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,7,13]],"date-time":"2018-07-13T00:00:00Z","timestamp":1531440000000},"content-version":"vor","delay-in-days":193,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Procedia Computer Science"],"published-print":{"date-parts":[[2018]]},"DOI":"10.1016\/j.procs.2018.07.150","type":"journal-article","created":{"date-parts":[[2018,7,30]],"date-time":"2018-07-30T11:23:47Z","timestamp":1532949827000},"page":"107-113","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["The hybrid neural model to strengthen the e-nose restricted in real complex conditions"],"prefix":"10.1016","volume":"134","author":[{"given":"Slimane","family":"Ouhmad","sequence":"first","affiliation":[]},{"given":"Abderrahim","family":"Beni-Hssane","sequence":"additional","affiliation":[]},{"given":"Abdelmajid","family":"Hajami","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.procs.2018.07.150_bib0001","unstructured":"Balachandran T. (2017) \u201cEnhancing and evaluating smart power distribution system reliability: a distributed sensor monitoring network approach.\u201d Dissertation, Wichita State University."},{"key":"10.1016\/j.procs.2018.07.150_bib0002","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1007\/s12403-017-0242-1","article-title":"Assessment of Health Risk of Children from Traditional Biomass Burning in Rural Households","volume":"10","author":"Chakraborty","year":"2018","journal-title":"Expo Health"},{"key":"10.1016\/j.procs.2018.07.150_bib0003","first-page":"223","article-title":"Advantages and drawbacks of the Batch Kohonen algorithm","volume":"2","author":"Fort","year":"2002","journal-title":"10th European Symp. On Artificial Neural Network"},{"key":"10.1016\/j.procs.2018.07.150_bib0004","doi-asserted-by":"crossref","unstructured":"Helli O., Siadat M., Lumbreras M. (2004) \u201cQuantitative and qualitative identification of H2S\/NO2 gaseous components in different reference atmospheres using a metal oxide sensor array,\u201d Sensors and Actuators B 103: 403\u2013408.","DOI":"10.1016\/j.snb.2004.04.069"},{"key":"10.1016\/j.procs.2018.07.150_bib0005","unstructured":"Lfakir A., et al. (2006) \u201cIdentification and Quantification of a complex gaseous atmosphere with an intelligent multi-sensor system. Application to detection of mixtures compounds H2S, NO2, SO2 wet atmosphere variable.\u201d Dissertation, Metz University."},{"key":"10.1016\/j.procs.2018.07.150_bib0006","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1016\/j.proeng.2016.11.535","article-title":"Sensitive materials for chemical agents vapor detection using SAW sensors","volume":"168","author":"Minot","year":"2016","journal-title":"Procedia Engineering"},{"key":"10.1016\/j.procs.2018.07.150_bib0007","first-page":"2060","article-title":"The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases","volume":"8","author":"Ouhmad","year":"2014","journal-title":"World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering"},{"key":"10.1016\/j.procs.2018.07.150_bib0008","unstructured":"Polzlbauer G. (2004) \u201cSurvey and comparison of quality measures for self-organizing maps.\u201d In: Proceedings of the Fifth Workshop on Data Analysis (WDA\u201904), Elfa Academic Press. pp. 67\u201382."},{"key":"10.1016\/j.procs.2018.07.150_bib0009","doi-asserted-by":"crossref","first-page":"849","DOI":"10.1016\/j.snb.2016.09.173","article-title":"Cascade recognition of Cu2+ and H2PO4 with high sensitivity and selectivity in aqueous media based on the effect of ESIPT","volume":"242","author":"Qu","year":"2017","journal-title":"Sensors and Actuators B: Chemical"},{"key":"10.1016\/j.procs.2018.07.150_bib00010","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1007\/s12403-016-0230-x","article-title":"Environmental Quality Assessment in Areas Used for Physical Activity and Recreation in a City Affected by Intense Urban Expansion (Fortaleza-CE, Brazil): Implications for Public Health Policy","volume":"9","author":"Rocha","year":"2017","journal-title":"Expo Health"},{"key":"10.1016\/j.procs.2018.07.150_bib00011","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1098\/rspb.1976.0087","article-title":"How patterned neural connections can be set up by self-organization","volume":"194","author":"Willshaw","year":"1976","journal-title":"Proc. of the Royal Society of London B"},{"key":"10.1016\/j.procs.2018.07.150_bib00012","unstructured":"World Health Organization. (2014) \u201cBurden of disease from Household Air Pollution for 2012.\u201d"},{"key":"10.1016\/j.procs.2018.07.150_bib00013","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1016\/j.proeng.2015.08.639","article-title":"Flexible surface acoustic wave humidity sensor with on chip temperature compensation","volume":"120","author":"Xuan","year":"2015","journal-title":"Procedia engineering"}],"container-title":["Procedia Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S187705091831113X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S187705091831113X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,7,30]],"date-time":"2018-07-30T11:24:02Z","timestamp":1532949842000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S187705091831113X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"references-count":13,"alternative-id":["S187705091831113X"],"URL":"https:\/\/doi.org\/10.1016\/j.procs.2018.07.150","relation":{},"ISSN":["1877-0509"],"issn-type":[{"value":"1877-0509","type":"print"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The hybrid neural model to strengthen the e-nose restricted in real complex conditions","name":"articletitle","label":"Article Title"},{"value":"Procedia Computer Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.procs.2018.07.150","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}