{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T17:20:28Z","timestamp":1720718428149},"reference-count":21,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2014,1,1]],"date-time":"2014-01-01T00:00:00Z","timestamp":1388534400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2014,6,6]],"date-time":"2014-06-06T00:00:00Z","timestamp":1402012800000},"content-version":"vor","delay-in-days":156,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/3.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Procedia Computer Science"],"published-print":{"date-parts":[[2014]]},"DOI":"10.1016\/j.procs.2014.05.088","type":"journal-article","created":{"date-parts":[[2014,6,6]],"date-time":"2014-06-06T02:06:09Z","timestamp":1402020369000},"page":"980-990","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Modeling Phase-transitions Using a High-performance, Isogeometric Analysis Framework"],"prefix":"10.1016","volume":"29","author":[{"given":"Philippe","family":"Vignal","sequence":"first","affiliation":[]},{"given":"Lisandro","family":"Dalcin","sequence":"additional","affiliation":[]},{"given":"Nathan.O.","family":"Collier","sequence":"additional","affiliation":[]},{"given":"Victor.M.","family":"Calo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.procs.2014.05.088_bib0005","doi-asserted-by":"crossref","unstructured":"I. Akkerman, Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and S. Hulshoff. The role of continuity in residual-based variational multiscale modeling of turbulence. Computational Mechanics, 41:371-378, 2008.","DOI":"10.1007\/s00466-007-0193-7"},{"key":"10.1016\/j.procs.2014.05.088_bib0010","unstructured":"S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, B.F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95\/11 - Revision 3.0.0, Argonne National Laboratory, 2008."},{"key":"10.1016\/j.procs.2014.05.088_bib0015","unstructured":"S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, B.F. Smith, and H. Zhang. PETSc Web page, 2010. http:\/\/www.mcs.anl.gov\/petsc."},{"key":"10.1016\/j.procs.2014.05.088_bib0020","doi-asserted-by":"crossref","unstructured":"N. Collier, L. Dalcin, D. Pardo, and V.M. Calo. The cost of continuity: performance of iterative solvers on isogeometric finite elements. SIAM Journal on Scientific Computing, 35(2):A767-A784, 2013.","DOI":"10.1137\/120881038"},{"key":"10.1016\/j.procs.2014.05.088_bib0025","doi-asserted-by":"crossref","unstructured":"N. Collier, D. Pardo, L. Dalcin, M. Paszynski, and V.M. Calo. The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers. Computer Methods in Applied Mechanics and Engineering, 213-216(0):353-361, 2012.","DOI":"10.1016\/j.cma.2011.11.002"},{"key":"10.1016\/j.procs.2014.05.088_bib0030","unstructured":"N.O. Collier, L. Dalc\u00edn, and V.M. Calo. PetIGA: High-performance isogeometric analysis. arxiv, abs\/1305.4452, 2013. http:\/\/arxiv.org\/abs\/1305.4452."},{"key":"10.1016\/j.procs.2014.05.088_bib0035","doi-asserted-by":"crossref","unstructured":"J.A. Cottrell, T.J.R. Hughes, and Yuri Bazilevs. Isogeometric Analysis: Toward Unification of CAD and FEA. John Wiley and Sons, 2009.","DOI":"10.1002\/9780470749081"},{"key":"10.1016\/j.procs.2014.05.088_bib0040","unstructured":"L. Dalcin and N. Collier. Petiga: A framework for high performance isogeometric analysis. https:. \/\/bitbucket.org\/dalcinl\/petiga, last viewed January 2014, 2012."},{"key":"10.1016\/j.procs.2014.05.088_bib0045","doi-asserted-by":"crossref","unstructured":"K.R. Elder, M. Katakowski, M. Haataja, and M. Grant. Modeling elasticity in crystal growth. Phys. Rev. Lett., 88:245705, Jun 2002.","DOI":"10.1103\/PhysRevLett.88.245701"},{"key":"10.1016\/j.procs.2014.05.088_bib0050","doi-asserted-by":"crossref","unstructured":"H. Emmerich, H. L\u00f6wen, R. Wittkowski, T. Gruhn, G.I. T\u00f3th, G. Tegze, and L. Gr\u00e1n\u00e1sy. Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview. Advances in Physics, 61(6):665-743, 2012.","DOI":"10.1080\/00018732.2012.737555"},{"key":"10.1016\/j.procs.2014.05.088_bib0055","doi-asserted-by":"crossref","unstructured":"J.A. Evans, Y. Bazilevs, I. Babu\u0161ka, and T.J.R. Hughes. n-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering, 198(21-26):1726-1741, 2009.","DOI":"10.1016\/j.cma.2009.01.021"},{"key":"10.1016\/j.procs.2014.05.088_bib0060","doi-asserted-by":"crossref","unstructured":"H. G\u00f3mez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes. Isogeometric analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering, 197(49-50):4333-4352, 2008.","DOI":"10.1016\/j.cma.2008.05.003"},{"key":"10.1016\/j.procs.2014.05.088_bib0065","doi-asserted-by":"crossref","unstructured":"H. G\u00f3mez and X. Nogueira. An unconditionally energy-stable method for the phase field crystal equation. Computer Methods in Applied Mechanics and Engineering, 249-252(0):52-61, 2012.","DOI":"10.1016\/j.cma.2012.03.002"},{"key":"10.1016\/j.procs.2014.05.088_bib0070","doi-asserted-by":"crossref","unstructured":"Z. Hu, S.M. Wise, C. Wang, and J.S. Lowengrub. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. Journal of Computational Physics, 228(15):5323-5339, 2009.","DOI":"10.1016\/j.jcp.2009.04.020"},{"key":"10.1016\/j.procs.2014.05.088_bib0075","unstructured":"T.J.R. Hughes. The finite element method: linear static and dynamic finite element analysis. Dover Publications, 2000."},{"key":"10.1016\/j.procs.2014.05.088_bib0080","doi-asserted-by":"crossref","unstructured":"T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194:4135-4195, 2005.","DOI":"10.1016\/j.cma.2004.10.008"},{"key":"10.1016\/j.procs.2014.05.088_bib0085","doi-asserted-by":"crossref","unstructured":"A Jaatinen and T Ala-Nissila. Extended phase diagram of the three-dimensional phase field crystal model. Journal of Physics: Condensed Matter, 22(20):205402, 2010.","DOI":"10.1088\/0953-8984\/22\/20\/205402"},{"key":"10.1016\/j.procs.2014.05.088_bib0090","doi-asserted-by":"crossref","unstructured":"N. Provatas and K. Elder. Phase-Field Methods in Materials Science and Engineering. Wiley-VCH, 1st edition, 2010.","DOI":"10.1002\/9783527631520"},{"key":"10.1016\/j.procs.2014.05.088_bib0095","doi-asserted-by":"crossref","unstructured":"R. Spatschek, C. M\u00fcller-Gugenberger, E. Brener, and B. Nestler. Phase field modeling of fracture and stress-induced phase transitions. Phys. Rev. E, 75:066111, Jun 2007.","DOI":"10.1103\/PhysRevE.75.066111"},{"key":"10.1016\/j.procs.2014.05.088_bib0100","doi-asserted-by":"crossref","unstructured":"P. Vignal, L. Dalcin, D.L. Brown, N.O. Collier, and V.M. Calo. Energy-stable time discretizations for the phase-field crystal equation. in preparation, 2014.","DOI":"10.1016\/j.compstruc.2015.05.029"},{"key":"10.1016\/j.procs.2014.05.088_bib0105","doi-asserted-by":"crossref","unstructured":"P.A. Vignal, N. Collier, and V.M. Calo. Phase field modeling using petiga. Procedia Computer Science, 18(0):1614-1623, 2013. 2013 International Conference on Computational Science.","DOI":"10.1016\/j.procs.2013.05.329"}],"container-title":["Procedia Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050914002658?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050914002658?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,11]],"date-time":"2019-08-11T05:12:50Z","timestamp":1565500370000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1877050914002658"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014]]},"references-count":21,"alternative-id":["S1877050914002658"],"URL":"https:\/\/doi.org\/10.1016\/j.procs.2014.05.088","relation":{},"ISSN":["1877-0509"],"issn-type":[{"value":"1877-0509","type":"print"}],"subject":[],"published":{"date-parts":[[2014]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Modeling Phase-transitions Using a High-performance, Isogeometric Analysis Framework","name":"articletitle","label":"Article Title"},{"value":"Procedia Computer Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.procs.2014.05.088","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}