{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T16:15:13Z","timestamp":1726503313487},"reference-count":24,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.patrec.2023.03.011","type":"journal-article","created":{"date-parts":[[2023,3,9]],"date-time":"2023-03-09T16:24:08Z","timestamp":1678379048000},"page":"64-70","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Improving Parkinson\u2019s disease recognition through voice analysis using deep learning"],"prefix":"10.1016","volume":"168","author":[{"given":"Rania","family":"Khaskhoussy","sequence":"first","affiliation":[]},{"given":"Yassine Ben","family":"Ayed","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2023.03.011_bib0001","series-title":"International Conference on Electrical, Communication, and Computer Engineering","first-page":"1","article-title":"A multi-model framework for evaluating type of speech samples having complementary information about Parkinson\u2019s disease","author":"Ali","year":"2019"},{"key":"10.1016\/j.patrec.2023.03.011_bib0002","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JTEHM.2019.2940900","article-title":"Automated detection of Parkinson\u2019s disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network","volume":"7","author":"Ali","year":"2019","journal-title":"IEEE J. Transl. Eng. Health Med."},{"key":"10.1016\/j.patrec.2023.03.011_bib0003","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.patrec.2019.04.005","article-title":"Detecting Parkinson\u2019s disease with sustained phonation and speech signals using machine learning techniques","volume":"125","author":"Almeida","year":"2019","journal-title":"Pattern Recognit. Lett."},{"issue":"1","key":"10.1016\/j.patrec.2023.03.011_bib0004","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13755-021-00162-8","article-title":"An algorithm for Parkinson\u2019s disease speech classification based on isolated words analysis","volume":"9","author":"Amato","year":"2021","journal-title":"Health Inf. Sci. Syst."},{"key":"10.1016\/j.patrec.2023.03.011_bib0005","series-title":"INTERSPEECH","first-page":"2961","article-title":"Source and vocal tract cues for speech-based classification of patients with Parkinson\u2019s disease and healthy subjects","author":"Bhattacharjee","year":"2021"},{"issue":"4","key":"10.1016\/j.patrec.2023.03.011_bib0006","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1109\/TASSP.1980.1163420","article-title":"Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences","volume":"28","author":"Davis","year":"1980","journal-title":"IEEE Trans. Acoust., Speech, Signal Process."},{"issue":"1","key":"10.1016\/j.patrec.2023.03.011_bib0007","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1101\/cshperspect.a008862","article-title":"The history of Parkinson\u2019s disease: early clinical descriptions and neurological therapies","volume":"1","author":"Goetz","year":"2011","journal-title":"Cold Spring Harb. Perspect. Med."},{"issue":"1","key":"10.1016\/j.patrec.2023.03.011_bib0008","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.bandc.2004.05.002","article-title":"Variability in fundamental frequency during speech in prodromal and incipient Parkinson\u2019s disease: a longitudinal case study","volume":"56","author":"Harel","year":"2004","journal-title":"Brain Cogn."},{"issue":"1","key":"10.1016\/j.patrec.2023.03.011_bib0009","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1113\/jphysiol.1962.sp006837","article-title":"Receptive fields, binocular interaction and functional architecture in the cat\u2019s visual cortex","volume":"160","author":"Hubel","year":"1962","journal-title":"J. Physiol."},{"key":"10.1016\/j.patrec.2023.03.011_bib0010","series-title":"Twelfth International Conference on Contemporary Computing","first-page":"1","article-title":"Parkinson disease detection using deep neural networks","author":"Johri","year":"2019"},{"key":"10.1016\/j.patrec.2023.03.011_bib0011","series-title":"International Conference on Intelligent Systems Design and Applications","first-page":"80","article-title":"Automatic detection of Parkinson\u2019s disease from speech using acoustic, prosodic and phonetic features","author":"Khaskhoussy","year":"2019"},{"key":"10.1016\/j.patrec.2023.03.011_bib0012","series-title":"International Conference on Knowledge Science, Engineering and Management","first-page":"414","article-title":"Detecting Parkinson\u2019s disease according to gender using speech signals","author":"Khaskhoussy","year":"2021"},{"key":"10.1016\/j.patrec.2023.03.011_bib0013","series-title":"International Conference on Advanced Data Mining and Applications","first-page":"15","article-title":"A deep convolutional autoencoder-based approach for Parkinson\u2019s disease diagnosis through speech signals","author":"Khaskhoussy","year":"2022"},{"key":"10.1016\/j.patrec.2023.03.011_bib0014","series-title":"Fourteenth International Conference on Machine Vision","first-page":"69","article-title":"An i-vector-based approach for discriminating between patients with Parkinson\u2019s disease and healthy people","volume":"vol. 12084","author":"Khaskhoussy","year":"2022"},{"issue":"1","key":"10.1016\/j.patrec.2023.03.011_bib0015","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13278-022-00905-9","article-title":"Speech processing for early Parkinson\u2019s disease diagnosis: machine learning and deep learning-based approach","volume":"12","author":"Khaskhoussy","year":"2022","journal-title":"Soc. Netw. Anal. Min."},{"key":"10.1016\/j.patrec.2023.03.011_bib0016","series-title":"INTERSPEECH","first-page":"4586","article-title":"Raw speech waveform based classification of patients with ALS, Parkinson\u2019s disease and healthy controls using CNN-BLSTM","author":"Mallela","year":"2020"},{"issue":"6","key":"10.1016\/j.patrec.2023.03.011_bib0017","doi-asserted-by":"crossref","first-page":"1860","DOI":"10.1093\/brain\/aws093","article-title":"How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder","volume":"135","author":"Postuma","year":"2012","journal-title":"Brain"},{"issue":"4","key":"10.1016\/j.patrec.2023.03.011_bib0018","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1109\/JBHI.2013.2245674","article-title":"Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings","volume":"17","author":"Sakar","year":"2013","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"6","key":"10.1016\/j.patrec.2023.03.011_bib0019","doi-asserted-by":"crossref","first-page":"3639","DOI":"10.1007\/s11831-022-09710-1","article-title":"A systematic review of artificial intelligence (AI) based approaches for the diagnosis of Parkinson\u2019s disease","volume":"29","author":"Saravanan","year":"2022","journal-title":"Arch. Comput. Methods Eng."},{"key":"10.1016\/j.patrec.2023.03.011_bib0020","doi-asserted-by":"crossref","first-page":"109603","DOI":"10.1016\/j.mehy.2020.109603","article-title":"Early diagnosis of Parkinson\u2019s disease using machine learning algorithms","volume":"138","author":"Senturk","year":"2020","journal-title":"Med. Hypotheses"},{"key":"10.1016\/j.patrec.2023.03.011_bib0021","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.cogsys.2018.12.002","article-title":"Diagnosis of Parkinson\u2019s disease using modified grey wolf optimization","volume":"54","author":"Sharma","year":"2019","journal-title":"Cogn. Syst. Res."},{"key":"10.1016\/j.patrec.2023.03.011_bib0022","series-title":"International Conference on Signal Processing and Communications","first-page":"1","article-title":"Speech task based automatic classification of ALS and Parkinson\u2019s disease and their severity using log Mel spectrograms","author":"Suhas","year":"2020"},{"key":"10.1016\/j.patrec.2023.03.011_bib0023","series-title":"Nonlinear Modeling","first-page":"55","article-title":"The support vector method of function estimation","author":"Vapnik","year":"1998"},{"key":"10.1016\/j.patrec.2023.03.011_bib0024","doi-asserted-by":"crossref","first-page":"109483","DOI":"10.1016\/j.mehy.2019.109483","article-title":"Automated Parkinson\u2019s disease recognition based on statistical pooling method using acoustic features","volume":"135","author":"Yaman","year":"2020","journal-title":"Med. Hypotheses"}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865523000764?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865523000764?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:55:37Z","timestamp":1696118137000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865523000764"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":24,"alternative-id":["S0167865523000764"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2023.03.011","relation":{},"ISSN":["0167-8655"],"issn-type":[{"type":"print","value":"0167-8655"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Improving Parkinson\u2019s disease recognition through voice analysis using deep learning","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2023.03.011","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}