{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T05:02:12Z","timestamp":1726290132475},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001428","name":"Amity University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001428","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.patrec.2022.04.037","type":"journal-article","created":{"date-parts":[[2022,5,10]],"date-time":"2022-05-10T03:26:44Z","timestamp":1652153204000},"page":"157-164","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":37,"special_numbering":"C","title":["Dilated residual grooming kernel model for breast cancer detection"],"prefix":"10.1016","volume":"159","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5352-1286","authenticated-orcid":false,"given":"Ramgopal","family":"Kashyap","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2022.04.037_bib0001","doi-asserted-by":"crossref","DOI":"10.1148\/ryai.2020190208","article-title":"Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligence tool","volume":"2","author":"Pacil\u00e8","year":"2020","journal-title":"Radiol. Artif. Intell."},{"key":"10.1016\/j.patrec.2022.04.037_bib0002","doi-asserted-by":"crossref","first-page":"162432","DOI":"10.1109\/ACCESS.2020.3021557","article-title":"Deep learning applied for histological diagnosis of breast cancer","volume":"8","author":"Yari","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.patrec.2022.04.037_bib0003","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2016\/3476143","article-title":"Inflammatory breast cancer from metastatic ovarian cancer","volume":"2016","author":"Achariyapota","year":"2016","journal-title":"Case Rep. Obstet. Gynecol."},{"key":"10.1016\/j.patrec.2022.04.037_bib0004","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1248\/yakushi.19-00178","article-title":"Research on analysis of final diagnosis and prognostic factors, and development of new therapeutic drugs for malignant tumors (especially malignant pediatric tumors)","volume":"140","author":"Suzuki","year":"2020","journal-title":"Yakugaku Zasshi"},{"key":"10.1016\/j.patrec.2022.04.037_bib0005","series-title":"Proceedings of the 8th International Conference on Information and Communication Systems (ICICS)","first-page":"120","article-title":"Early diagnosis of breast cancer using contrast limited adaptive histogram equalization (CLAHE) and morphology methods","author":"Kharel","year":"2017"},{"key":"10.1016\/j.patrec.2022.04.037_bib0006","doi-asserted-by":"crossref","first-page":"1455","DOI":"10.1109\/TBME.2015.2496264","article-title":"A dataset for breast cancer histopathological image classification","volume":"63","author":"Spanhol","year":"2016","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"1","key":"10.1016\/j.patrec.2022.04.037_bib0007","doi-asserted-by":"crossref","DOI":"10.1186\/s13104-019-4121-7","article-title":"BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis","volume":"12","author":"Aksac","year":"2019","journal-title":"BMC Res. Notes"},{"issue":"4","key":"10.1016\/j.patrec.2022.04.037_bib0008","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs","volume":"40","author":"Chen","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patrec.2022.04.037_bib0009","doi-asserted-by":"crossref","DOI":"10.3389\/fnins.2018.00818","article-title":"Multiple sclerosis identification by 14-layer convolutional neural network with batch normalization, dropout, and stochastic pooling","volume":"12","author":"Wang","year":"2018","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.patrec.2022.04.037_bib0010","series-title":"Proceedings of the Conference on Computer Vision and Pattern Recognition","first-page":"1580","article-title":"GhostNet: more features from cheap operations","author":"Han","year":"2021"},{"key":"10.1016\/j.patrec.2022.04.037_bib0011","doi-asserted-by":"crossref","DOI":"10.3389\/fnins.2018.00818","article-title":"Multiple sclerosis identification by 14-layer convolutional neural network with batch normalization, dropout, and stochastic pooling","volume":"12","author":"Wang","year":"2018","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.patrec.2022.04.037_bib0012","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1504\/IJIM.2018.093008","article-title":"Object boundary detection through robust active contour-based method with global information","volume":"3","author":"Kashyap","year":"2018","journal-title":"Int. J. Image Min."},{"key":"10.1016\/j.patrec.2022.04.037_bib0013","doi-asserted-by":"crossref","DOI":"10.3389\/fmed.2019.00193","article-title":"A high-performance system for robust stain normalization of whole-slide images in histopathology","volume":"6","author":"Anghel","year":"2019","journal-title":"Front. Med."},{"key":"10.1016\/j.patrec.2022.04.037_bib0014","doi-asserted-by":"crossref","DOI":"10.1186\/s12911-019-0913-x","article-title":"Breast cancer histopathology image classification through assembling multiple compact CNNs","volume":"19","author":"Zhu","year":"2019","journal-title":"BMC Med. Inform. Decis. Mak."},{"key":"10.1016\/j.patrec.2022.04.037_bib0015","doi-asserted-by":"crossref","first-page":"187531","DOI":"10.1109\/ACCESS.2020.3029881","article-title":"Breast cancer classification using deep learning approaches and histopathology image: a comparison study","volume":"8","author":"Shahidi","year":"2020","journal-title":"IEEE Access"},{"issue":"7","key":"10.1016\/j.patrec.2022.04.037_bib0016","doi-asserted-by":"crossref","first-page":"3741","DOI":"10.1002\/mp.14915","article-title":"Automatic lung nodule detection in thoracic CT scans using dilated slice-wise convolutions","volume":"48","author":"Farhangi","year":"2021","journal-title":"Med. Phys."},{"key":"10.1016\/j.patrec.2022.04.037_bib0017","doi-asserted-by":"crossref","DOI":"10.1016\/j.scienta.2019.109133","article-title":"Classification of sour lemons based on apparent defects using stochastic pooling mechanism in deep convolutional neural networks","volume":"263","author":"Jahanbakhshi","year":"2020","journal-title":"Sci. Hortic."},{"key":"10.1016\/j.patrec.2022.04.037_bib0018","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2021\/4530180","article-title":"PSSPNN: patchShuffle stochastic pooling neural network for an explainable diagnosis of COVID-19 with multiple-way data augmentation","volume":"2021","author":"Wang","year":"2021","journal-title":"Comput Math Methods Med"},{"key":"10.1016\/j.patrec.2022.04.037_bib0019","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","article-title":"ShuffleNet: an extremely efficient convolutional neural network for mobile devices","author":"Zhang","year":"2018"},{"issue":"09","key":"10.1016\/j.patrec.2022.04.037_bib0020","first-page":"139","article-title":"An image segmentation algorithm based on a local region conditional random field model","volume":"13","author":"Jiang","year":"2020","journal-title":"Int. J. Commun. Network and. Syst. Sci."},{"key":"10.1016\/j.patrec.2022.04.037_bib0021","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"The role of context for object detection and semantic segmentation in the wild","author":"Mottaghi","year":"2014"},{"key":"10.1016\/j.patrec.2022.04.037_bib0022","series-title":"Proceedings of the IEEE 12th International Conference on Computer Vision","article-title":"Associative hierarchical CRFs for object class image segmentation","author":"Ladicky","year":"2009"},{"key":"10.1016\/j.patrec.2022.04.037_bib0023","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Gaussian conditional random field network for semantic segmentation","author":"Vemulapalli","year":"2016"},{"key":"10.1016\/j.patrec.2022.04.037_bib0024","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV)","article-title":"Dilated convolutional neural networks for sequential manifold-valued data","author":"Chakraborty","year":"2019"},{"key":"10.1016\/j.patrec.2022.04.037_bib0025","first-page":"1","article-title":"A novel multichannel dilated convolution neural network for human activity recognition","volume":"2020","author":"Lin","year":"2020","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.patrec.2022.04.037_bib0026","doi-asserted-by":"crossref","first-page":"1323","DOI":"10.3390\/ijerph17041323","article-title":"A gated dilated convolution with attention model for clinical cloze-style reading comprehension","volume":"17","author":"Wang","year":"2020","journal-title":"Int. J. Environ. Res. Public Health"},{"key":"10.1016\/j.patrec.2022.04.037_bib0027","series-title":"Proceedings of the International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","article-title":"Vehicle detection method based on GhostNet-SSD","author":"Liu","year":"2020"},{"issue":"1","key":"10.1016\/j.patrec.2022.04.037_bib0028","first-page":"1","article-title":"Breast cancer histopathological image classification using stochastic dilated residual ghost model","volume":"12","author":"Kashyap","year":"2022","journal-title":"Int. J. Inf. Retr. Res."},{"key":"10.1016\/j.patrec.2022.04.037_bib0029","doi-asserted-by":"crossref","first-page":"2758","DOI":"10.3906\/elk-2104-40","article-title":"Evolution of histopathological breast cancer images classification using stochastic dilated residual ghost model","volume":"29","author":"Kashyap","year":"2021","journal-title":"Turk. J. Electr. Eng. Comput. Sci."},{"issue":"5","key":"10.1016\/j.patrec.2022.04.037_bib0030","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1109\/LGRS.2020.2988294","article-title":"SCAttNet: semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images","volume":"18","author":"Mei","year":"2021","journal-title":"IEEE Geosci. Remote Sens. Lett."}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865522001507?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865522001507?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T17:59:35Z","timestamp":1673287175000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865522001507"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":30,"alternative-id":["S0167865522001507"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2022.04.037","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Dilated residual grooming kernel model for breast cancer detection","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2022.04.037","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}