{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T16:21:22Z","timestamp":1723566082486},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.patrec.2022.04.035","type":"journal-article","created":{"date-parts":[[2022,4,30]],"date-time":"2022-04-30T15:01:33Z","timestamp":1651330893000},"page":"31-37","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["One-net: Convolutional color constancy simplified"],"prefix":"10.1016","volume":"159","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6054-3125","authenticated-orcid":false,"given":"Ilija","family":"Domislovi\u0107","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5866-4905","authenticated-orcid":false,"given":"Donik","family":"Vr\u0161nak","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4321-4557","authenticated-orcid":false,"given":"Marko","family":"Suba\u0161i\u0107","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4857-5351","authenticated-orcid":false,"given":"Sven","family":"Lon\u010dari\u0107","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2022.04.035_bib0001","unstructured":"M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.\u00a0S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man\u00e9, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi\u00e9gas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from https:\/\/www.tensorflow.org\/."},{"key":"10.1016\/j.patrec.2022.04.035_bib0002","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"243","article-title":"What else can fool deep learning? addressing color constancy errors on deep neural network performance","author":"Afifi","year":"2019"},{"key":"10.1016\/j.patrec.2022.04.035_bib0003","unstructured":"D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473."},{"key":"10.1016\/j.patrec.2022.04.035_bib0004","unstructured":"N. Bani\u0107, K. Ko\u0161\u010devi\u0107, S. Lon\u010dari\u0107, Unsupervised learning for color constancy. arXiv preprint arXiv:1712.00436."},{"key":"10.1016\/j.patrec.2022.04.035_bib0005","series-title":"2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA)","first-page":"366","article-title":"The past and the present of the color checker dataset misuse","author":"Bani\u0107","year":"2019"},{"issue":"12","key":"10.1016\/j.patrec.2022.04.035_bib0006","doi-asserted-by":"crossref","first-page":"1240","DOI":"10.1109\/LSP.2013.2285960","article-title":"Light random sprays retinex: exploiting the noisy illumination estimation","volume":"20","author":"Bani\u0107","year":"2013","journal-title":"IEEE Signal Process Lett"},{"issue":"9","key":"10.1016\/j.patrec.2022.04.035_bib0007","doi-asserted-by":"crossref","first-page":"985","DOI":"10.1109\/TIP.2002.802529","article-title":"A comparison of computational color constancy algorithms. ii. experiments with image data","volume":"11","author":"Barnard","year":"2002","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patrec.2022.04.035_bib0008","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"379","article-title":"Convolutional color constancy","author":"Barron","year":"2015"},{"key":"10.1016\/j.patrec.2022.04.035_bib0009","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"886","article-title":"Fast fourier color constancy","author":"Barron","year":"2017"},{"issue":"9","key":"10.1016\/j.patrec.2022.04.035_bib0010","doi-asserted-by":"crossref","first-page":"4347","DOI":"10.1109\/TIP.2017.2713044","article-title":"Single and multiple illuminant estimation using convolutional neural networks","volume":"26","author":"Bianco","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.patrec.2022.04.035_bib0011","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0016-0032(80)90058-7","article-title":"A spatial processor model for object colour perception","volume":"310","author":"Buchsbaum","year":"1980","journal-title":"J Franklin Inst"},{"issue":"5","key":"10.1016\/j.patrec.2022.04.035_bib0012","doi-asserted-by":"crossref","first-page":"1049","DOI":"10.1364\/JOSAA.31.001049","article-title":"Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution","volume":"31","author":"Cheng","year":"2014","journal-title":"JOSA A"},{"key":"10.1016\/j.patrec.2022.04.035_bib0013","series-title":"2009 IEEE conference on computer vision and pattern recognition","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.patrec.2022.04.035_bib0014","series-title":"1993 (4th) International Conference on Computer Vision","first-page":"164","article-title":"Diagonal transforms suffice for color constancy","author":"Finlayson","year":"1993"},{"key":"10.1016\/j.patrec.2022.04.035_bib0015","series-title":"A curious problem with using the colour checker dataset for illuminant estimation","author":"Finlayson","year":"2017"},{"issue":"2","key":"10.1016\/j.patrec.2022.04.035_bib0016","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1364\/JOSAA.18.000253","article-title":"Color constancy at a pixel","volume":"18","author":"Finlayson","year":"2001","journal-title":"J. Opt. Soc. Am. A"},{"issue":"3","key":"10.1016\/j.patrec.2022.04.035_bib0017","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1023\/A:1011120214885","article-title":"Solving for colour constancy using a constrained dichromatic reflection model","volume":"42","author":"Finlayson","year":"2001","journal-title":"Int J Comput Vis"},{"key":"10.1016\/j.patrec.2022.04.035_bib0018","series-title":"Color and Imaging Conference","first-page":"37","article-title":"Shades of gray and colour constancy","volume":"volume 2004","author":"Finlayson","year":"2004"},{"key":"10.1016\/j.patrec.2022.04.035_bib0019","series-title":"Color and imaging conference","first-page":"256","article-title":"The rehabilitation of maxrgb","volume":"volume 2010","author":"Funt","year":"2010"},{"issue":"10","key":"10.1016\/j.patrec.2022.04.035_bib0020","doi-asserted-by":"crossref","first-page":"1973","DOI":"10.1109\/TPAMI.2015.2396053","article-title":"Color constancy using double-opponency","volume":"37","author":"Gao","year":"2015","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.patrec.2022.04.035_bib0021","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"581","article-title":"Physics-based edge evaluation for improved color constancy","author":"Gijsenij","year":"2009"},{"issue":"9","key":"10.1016\/j.patrec.2022.04.035_bib0022","doi-asserted-by":"crossref","first-page":"2475","DOI":"10.1109\/TIP.2011.2118224","article-title":"Computational color constancy: survey and experiments","volume":"20","author":"Gijsenij","year":"2011","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.patrec.2022.04.035_bib0023","first-page":"303","article-title":"Scene illuminant estimation: past, present, and future","volume":"31","author":"Hordley","year":"2006"},{"key":"10.1016\/j.patrec.2022.04.035_bib0024","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4085","article-title":"Fc4: Fully convolutional color constancy with confidence-weighted pooling","author":"Hu","year":"2017"},{"key":"10.1016\/j.patrec.2022.04.035_bib0025","unstructured":"F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model size. arXiv preprint arXiv:1602.07360."},{"key":"10.1016\/j.patrec.2022.04.035_bib0026","series-title":"Proceedings of the 2020 2nd Asia Pacific Information Technology Conference","first-page":"143","article-title":"Guiding the illumination estimation using the attention mechanism","author":"Ko\u0161\u010devi\u0107","year":"2020"},{"key":"10.1016\/j.patrec.2022.04.035_bib0027","doi-asserted-by":"crossref","first-page":"26755","DOI":"10.1109\/ACCESS.2021.3057072","article-title":"Iterative convolutional neural network-based illumination estimation","volume":"9","author":"Ko\u0161\u010devi\u0107","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.patrec.2022.04.035_sbref0028","first-page":"109","article-title":"Influence of adaptation on the effects produced by luminous stimuli","volume":"3","author":"von Kries","year":"1905","journal-title":"handbuch der Physiologie des Menschen"},{"key":"10.1016\/j.patrec.2022.04.035_bib0029","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","volume":"25","author":"Krizhevsky","year":"2012","journal-title":"Adv Neural Inf Process Syst"},{"key":"10.1016\/j.patrec.2022.04.035_bib0030","doi-asserted-by":"crossref","first-page":"7722","DOI":"10.1109\/TIP.2020.3004921","article-title":"Bag of color features for color constancy","volume":"29","author":"Laakom","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patrec.2022.04.035_bib0031","series-title":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","first-page":"1085","article-title":"Color constancy convolutional autoencoder","author":"Laakom","year":"2019"},{"key":"10.1016\/j.patrec.2022.04.035_bib0032","series-title":"2020 IEEE International Conference on Image Processing (ICIP)","first-page":"978","article-title":"Probabilistic color constancy","author":"Laakom","year":"2020"},{"key":"10.1016\/j.patrec.2022.04.035_bib0033","doi-asserted-by":"crossref","first-page":"39560","DOI":"10.1109\/ACCESS.2021.3064382","article-title":"Intel-tau: a color constancy dataset","volume":"9","author":"Laakom","year":"2021","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.patrec.2022.04.035_bib0034","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1038\/scientificamerican1277-108","article-title":"The retinex theory of color vision","volume":"237","author":"Land","year":"1977","journal-title":"Sci. Am."},{"issue":"10","key":"10.1016\/j.patrec.2022.04.035_bib0035","doi-asserted-by":"crossref","first-page":"1694","DOI":"10.1364\/JOSAA.3.001694","article-title":"Method for computing the scene-illuminant chromaticity from specular highlights","volume":"3","author":"Lee","year":"1986","journal-title":"JOSA A"},{"key":"10.1016\/j.patrec.2022.04.035_bib0036","series-title":"Thirteenth International Conference on Machine Vision","first-page":"116051E","article-title":"Robust white balance estimation using joint attention and angular loss optimization","volume":"volume 11605","author":"Li","year":"2021"},{"key":"10.1016\/j.patrec.2022.04.035_bib0037","unstructured":"I. Loshchilov, F. Hutter, Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101."},{"key":"10.1016\/j.patrec.2022.04.035_bib0038","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"5755","article-title":"Learning bag-of-features pooling for deep convolutional neural networks","author":"Passalis","year":"2017"},{"key":"10.1016\/j.patrec.2022.04.035_bib0039","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.patcog.2016.11.014","article-title":"Neural bag-of-features learning","volume":"64","author":"Passalis","year":"2017","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.patrec.2022.04.035_bib0040","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"8062","article-title":"On finding gray pixels","author":"Qian","year":"2019"},{"issue":"3","key":"10.1016\/j.patrec.2022.04.035_bib0041","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1117\/1.JEI.26.3.031207","article-title":"Milano Retinex family","volume":"26","author":"Rizzi","year":"2017","journal-title":"J Electron Imaging"},{"key":"10.1016\/j.patrec.2022.04.035_bib0042","series-title":"2017 IEEE winter conference on applications of computer vision (WACV)","first-page":"464","article-title":"Cyclical learning rates for training neural networks","author":"Smith","year":"2017"},{"issue":"1","key":"10.1016\/j.patrec.2022.04.035_bib0043","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"The journal of machine learning research"},{"issue":"9","key":"10.1016\/j.patrec.2022.04.035_bib0044","doi-asserted-by":"crossref","first-page":"2207","DOI":"10.1109\/TIP.2007.901808","article-title":"Edge-based color constancy","volume":"16","author":"Van De Weijer","year":"2007","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patrec.2022.04.035_bib0045","series-title":"Python 3 reference manual","author":"Van Rossum","year":"2009"},{"key":"10.1016\/j.patrec.2022.04.035_bib0046","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"3258","article-title":"Multi-domain learning for accurate and few-shot color constancy","author":"Xiao","year":"2020"},{"key":"10.1016\/j.patrec.2022.04.035_bib0047","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"2254","article-title":"Efficient illuminant estimation for color constancy using grey pixels","author":"Yang","year":"2015"},{"issue":"10","key":"10.1016\/j.patrec.2022.04.035_bib0048","doi-asserted-by":"crossref","first-page":"1943","DOI":"10.1109\/TPAMI.2015.2502579","article-title":"Accelerating very deep convolutional networks for classification and detection","volume":"38","author":"Zhang","year":"2015","journal-title":"IEEE Trans Pattern Anal Mach Intell"}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865522001477?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865522001477?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T17:59:34Z","timestamp":1673287174000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865522001477"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":48,"alternative-id":["S0167865522001477"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2022.04.035","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"One-net: Convolutional color constancy simplified","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2022.04.035","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}