{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T23:25:58Z","timestamp":1720049158904},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61972282","62106169"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1016\/j.patrec.2022.02.003","type":"journal-article","created":{"date-parts":[[2022,2,5]],"date-time":"2022-02-05T08:10:45Z","timestamp":1644048645000},"page":"81-87","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Calibrating probabilistic predictions of quantile regression forests with conformal predictive systems"],"prefix":"10.1016","volume":"156","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1586-0196","authenticated-orcid":false,"given":"Di","family":"Wang","sequence":"first","affiliation":[]},{"given":"Ping","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Cong","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3026-9038","authenticated-orcid":false,"given":"Pingping","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2022.02.003_bib0009","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1146\/annurev-statistics-062713-085831","article-title":"Probabilistic forecasting","volume":"1","author":"Gneiting","year":"2014","journal-title":"Annu. Rev. Stat. Appl."},{"key":"10.1016\/j.patrec.2022.02.003_bib0021","series-title":"Conformal and Probabilistic Prediction and Applications","first-page":"105","article-title":"Universally consistent conformal predictive distributions","author":"Vovk","year":"2019"},{"issue":"3","key":"10.1016\/j.patrec.2022.02.003_bib0027","doi-asserted-by":"crossref","first-page":"445","DOI":"10.1007\/s10994-018-5755-8","article-title":"Nonparametric predictive distributions based on conformal prediction","volume":"108","author":"Vovk","year":"2019","journal-title":"Mach. Learn."},{"key":"10.1016\/j.patrec.2022.02.003_bib0023","series-title":"Braverman Readings in Machine Learning. Key Ideas from Inception to Current State","first-page":"103","article-title":"Conformal predictive distributions with kernels","author":"Vovk","year":"2018"},{"issue":"6","key":"10.1016\/j.patrec.2022.02.003_bib0013","article-title":"Quantile regression forests","volume":"7","author":"Meinshausen","year":"2006","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"10.1016\/j.patrec.2022.02.003_bib0006","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.patrec.2022.02.003_bib0007","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.patrec.2021.01.008","article-title":"Large group activity security risk assessment and risk early warning based on random forest algorithm","volume":"144","author":"Chen","year":"2021","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2022.02.003_bib0016","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.patrec.2019.12.023","article-title":"Deterministic dropout for deep neural networks using composite random forest","volume":"131","author":"Santra","year":"2020","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2022.02.003_bib0020","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1016\/j.patrec.2017.11.008","article-title":"Random forest regression for manifold-valued responses","volume":"101","author":"Tsagkrasoulis","year":"2018","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2022.02.003_bib0008","first-page":"1","article-title":"Calibrated ensemble forecasts of the height of new snow using quantile regression forests and ensemble model output statistics","author":"Evin","year":"2021","journal-title":"Nonlinear Process Geophys."},{"issue":"6","key":"10.1016\/j.patrec.2022.02.003_bib0019","doi-asserted-by":"crossref","first-page":"2375","DOI":"10.1175\/MWR-D-15-0260.1","article-title":"Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics","volume":"144","author":"Taillardat","year":"2016","journal-title":"Mon. Weather Rev."},{"key":"10.1016\/j.patrec.2022.02.003_bib0024","series-title":"Conformal and Probabilistic Prediction and Applications","first-page":"37","article-title":"Cross-conformal predictive distributions","author":"Vovk","year":"2018"},{"key":"10.1016\/j.patrec.2022.02.003_bib0017","series-title":"Confidence, likelihood, probability: Statistical inference with confidence distributions","author":"Schweder","year":"2016"},{"key":"10.1016\/j.patrec.2022.02.003_bib0018","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.jspi.2017.09.012","article-title":"Prediction with confidence-a general framework for predictive inference","volume":"195","author":"Shen","year":"2018","journal-title":"J. Stat. Plan. Infer."},{"issue":"1","key":"10.1016\/j.patrec.2022.02.003_bib0002","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.xphs.2020.09.055","article-title":"Predicting with confidence: using conformal prediction in drug discovery","volume":"110","author":"Alvarsson","year":"2021","journal-title":"J. Pharm. Sci."},{"key":"10.1016\/j.patrec.2022.02.003_bib0022","series-title":"Algorithmic learning in a random world","author":"Vovk","year":"2005"},{"key":"10.1016\/j.patrec.2022.02.003_bib0030","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.neucom.2020.07.074","article-title":"Asymptotic analysis of locally weighted jackknife prediction","volume":"417","author":"Wang","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patrec.2022.02.003_bib0004","series-title":"Conformal prediction for reliable machine learning: Theory, adaptations and applications","author":"Balasubramanian","year":"2014"},{"key":"10.1016\/j.patrec.2022.02.003_bib0028","doi-asserted-by":"crossref","first-page":"106807","DOI":"10.1016\/j.asoc.2020.106807","article-title":"A conformal prediction inspired approach for distribution regression with random fourier features","volume":"97","author":"Wang","year":"2020","journal-title":"Appl. Soft. Comput."},{"key":"10.1016\/j.patrec.2022.02.003_bib0026","series-title":"Conformal and Probabilistic Prediction and Applications","first-page":"84","article-title":"Conformal calibration","author":"Vovk","year":"2020"},{"key":"10.1016\/j.patrec.2022.02.003_bib0029","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.neunet.2020.03.022","article-title":"A fast conformal predictive system with regularized extreme learning machine","volume":"126","author":"Wang","year":"2020","journal-title":"Neural Netw."},{"issue":"1\u20132","key":"10.1016\/j.patrec.2022.02.003_bib0010","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1007\/s10994-014-5453-0","article-title":"Regression conformal prediction with random forests","volume":"97","author":"Johansson","year":"2014","journal-title":"Mach. Learn."},{"key":"10.1016\/j.patrec.2022.02.003_bib0025","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1016\/j.neucom.2019.10.110","article-title":"Computationally efficient versions of conformal predictive distributions","volume":"397","author":"Vovk","year":"2020","journal-title":"Neurocomputing"},{"issue":"108","key":"10.1016\/j.patrec.2022.02.003_bib0011","first-page":"1","article-title":"Towards a unified analysis of random fourier features","volume":"22","author":"Li","year":"2021","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patrec.2022.02.003_bib0033","doi-asserted-by":"crossref","first-page":"1859","DOI":"10.1109\/TSP.2021.3065173","article-title":"General cauchy conjugate gradient algorithms based on multiple random fourier features","volume":"69","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.patrec.2022.02.003_bib0012","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1016\/j.neucom.2019.07.113","article-title":"Efficient conformal predictor ensembles","volume":"397","author":"Linusson","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patrec.2022.02.003_bib0032","series-title":"Conformal and Probabilistic Prediction and Applications","first-page":"134","article-title":"Evaluating different approaches to calibrating conformal predictive systems","author":"Werner","year":"2020"},{"key":"10.1016\/j.patrec.2022.02.003_bib0005","series-title":"Conformal and Probabilistic Prediction and Applications","first-page":"24","article-title":"Mondrian conformal predictive distributions","author":"Bostr\u00f6m","year":"2021"},{"key":"10.1016\/j.patrec.2022.02.003_bib0031","series-title":"All of nonparametric statistics","author":"Wasserman","year":"2006"},{"key":"10.1016\/j.patrec.2022.02.003_bib0015","unstructured":"C.E. Rasmussen, R.M. Neal, G. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra, R. Tibshirani, Delve data for evaluating learning in valid experiments, 1996. http:\/\/www.cs.toronto.edu\/delve."},{"issue":"2\u20133","key":"10.1016\/j.patrec.2022.02.003_bib0001","first-page":"255","article-title":"Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework","volume":"17","author":"Alcal\u00e1","year":"2010","journal-title":"J. Mult.-Valued Log. Soft Comput."},{"key":"10.1016\/j.patrec.2022.02.003_bib0003","unstructured":"A. Asuncion, D. Newman, Uci machine learning repository, 2007."},{"key":"10.1016\/j.patrec.2022.02.003_bib0014","unstructured":"R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2018. https:\/\/www.R-project.org\/."}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016786552200037X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016786552200037X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T17:52:49Z","timestamp":1673286769000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S016786552200037X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":33,"alternative-id":["S016786552200037X"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2022.02.003","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2022,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Calibrating probabilistic predictions of quantile regression forests with conformal predictive systems","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2022.02.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}