{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T23:25:01Z","timestamp":1720049101421},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.patrec.2021.11.017","type":"journal-article","created":{"date-parts":[[2021,11,16]],"date-time":"2021-11-16T16:50:54Z","timestamp":1637081454000},"page":"232-238","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Biomedical image segmentation based on full-Resolution network"],"prefix":"10.1016","volume":"153","author":[{"given":"Lei","family":"Qu","sequence":"first","affiliation":[]},{"given":"Meng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Kaixuan","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Wan","family":"Wan","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Duan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2021.11.017_bib0001","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.neunet.2019.08.025","article-title":"Multiresunet : rethinking the u-net architecture for multimodal biomedical image segmentation","volume":"121","author":"Ibtehaz","year":"2020","journal-title":"Neural Netw"},{"issue":"2","key":"10.1016\/j.patrec.2021.11.017_bib0002","doi-asserted-by":"crossref","first-page":"434","DOI":"10.1016\/j.patcog.2009.03.008","article-title":"A comparative evaluation of interactive segmentation algorithms","volume":"43","author":"McGuinness","year":"2010","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.patrec.2021.11.017_bib0003","first-page":"168","article-title":"Skin lesion analysis toward melanoma detection: achallenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic)","author":"Gutman","year":"2018","journal-title":"2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)"},{"key":"10.1016\/j.patrec.2021.11.017_bib0004","doi-asserted-by":"crossref","first-page":"4568","DOI":"10.1002\/mp.13141","article-title":"Autosegmentation for thoracic radiation treatment planning: a grand challenge at aapm 2017","volume":"45","author":"Yang","year":"2018","journal-title":"Med Phys"},{"issue":"3","key":"10.1016\/j.patrec.2021.11.017_bib0005","doi-asserted-by":"crossref","first-page":"990","DOI":"10.1016\/j.eswa.2014.09.020","article-title":"Benign and malignant breast tumors classification based on region growing and cnn segmentation","volume":"42","author":"Rouhi","year":"2015","journal-title":"Expert Systems with Applications An International Journal"},{"key":"10.1016\/j.patrec.2021.11.017_bib0006","series-title":"Advances in Neural Information Processing Systems 25","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.patrec.2021.11.017_bib0007","series-title":"3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings","first-page":"1","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2015"},{"key":"10.1016\/j.patrec.2021.11.017_bib0008","series-title":"Advances in Neural Information Processing Systems 25","first-page":"2843","article-title":"Deep neural networks segment neuronal membranes in electron microscopy images","author":"Ciresan","year":"2012"},{"key":"10.1016\/j.patrec.2021.11.017_bib0009","series-title":"IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015","first-page":"3431","article-title":"Fully convolutional networks for semantic segmentation","volume":"volume\u00a039","author":"Long","year":"2015"},{"issue":"4","key":"10.1016\/j.patrec.2021.11.017_bib0010","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2018","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.patrec.2021.11.017_bib0011","doi-asserted-by":"crossref","first-page":"8759","DOI":"10.1109\/CVPR.2018.00913","article-title":"Path aggregation network for instance segmentation","author":"Liu","year":"2018","journal-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.patrec.2021.11.017_bib0012","series-title":"MICCAI","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","volume":"volume 9351","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.patrec.2021.11.017_bib0013","series-title":"MBIA\/MFCA@MICCAI","first-page":"102","article-title":"Cu-net: Cascaded u-net with loss weighted sampling for brain tumor segmentation","author":"Liu","year":"2019"},{"issue":"5","key":"10.1016\/j.patrec.2021.11.017_bib0014","doi-asserted-by":"crossref","first-page":"1316","DOI":"10.1109\/TMI.2019.2948320","article-title":"Modified u-net (mu-net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in ct images","volume":"39","author":"Seo","year":"2020","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.patrec.2021.11.017_bib0015","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.patcog.2018.11.030","article-title":"Blood vessel segmentation from fundus image by a cascade classification framework - sciencedirect","volume":"88","author":"Wang","year":"2019","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.patrec.2021.11.017_bib0016","doi-asserted-by":"crossref","first-page":"13304","DOI":"10.1109\/ACCESS.2021.3052224","article-title":"A method of steel bar image segmentation based on multi-attention u-net","volume":"9","author":"Shi","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.patrec.2021.11.017_bib0017","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1016\/j.patrec.2020.01.024","article-title":"Bshapenet: object detection and instance segmentation with bounding shape masks","volume":"131","author":"Kang","year":"2020","journal-title":"Pattern Recognit Lett"},{"key":"10.1016\/j.patrec.2021.11.017_bib0018","series-title":"2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"14588","article-title":"Rethinking depthwise separable convolutions: How intra-kernel correlations lead to improved mobilenets","author":"Haase","year":"2020"},{"key":"10.1016\/j.patrec.2021.11.017_bib0019","series-title":"MICCAI","first-page":"424","article-title":"3d u-net: Learning dense volumetric segmentation from sparse annotation","volume":"volume 9901","author":"Cicek","year":"2016"},{"key":"10.1016\/j.patrec.2021.11.017_bib0020","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/978-3-030-00889-5_1","article-title":"Unet++: a nested u-net architecture for medical image segmentation","volume":"11045","author":"Zhou","year":"2018","journal-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S..."},{"issue":"4","key":"10.1016\/j.patrec.2021.11.017_bib0021","doi-asserted-by":"crossref","first-page":"1707","DOI":"10.1002\/mp.13416","article-title":"Deeply supervised 3d fully convolutional networks with group dilated convolution for automatic mri prostate segmentation","volume":"46","author":"Wang","year":"2019","journal-title":"Med Phys"},{"key":"10.1016\/j.patrec.2021.11.017_bib0022","doi-asserted-by":"crossref","first-page":"105241","DOI":"10.1016\/j.cmpb.2019.105241","article-title":"Skin lesion segmentation using high-resolution convolutional neural network","volume":"186","author":"Xie","year":"2019","journal-title":"Comput Methods Programs Biomed"},{"issue":"SEP.1","key":"10.1016\/j.patrec.2021.11.017_bib0023","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.patrec.2018.08.002","article-title":"Foreground segmentation using convolutional neural networks for multiscale feature encoding","volume":"112","author":"Lim","year":"2018","journal-title":"Pattern Recognit Lett"},{"key":"10.1016\/j.patrec.2021.11.017_bib0024","doi-asserted-by":"crossref","first-page":"3039","DOI":"10.1109\/TIP.2019.2955297","article-title":"Bi-directional dermoscopic feature learning and multi-scale consistent decision fusion for skin lesion segmentation","volume":"29","author":"Wang","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patrec.2021.11.017_bib0025","doi-asserted-by":"crossref","first-page":"3684","DOI":"10.1109\/CVPR.2018.00388","article-title":"Denseaspp for semantic segmentation in street scenes","author":"Yang","year":"2018","journal-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.patrec.2021.11.017_bib0026","doi-asserted-by":"crossref","first-page":"1055","DOI":"10.1109\/ICASSP40776.2020.9053405","article-title":"Unet 3+: a full-scale connected unet for medical image segmentation","author":"Huang","year":"2020","journal-title":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)"},{"key":"10.1016\/j.patrec.2021.11.017_bib0027","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","article-title":"Spatial pyramid pooling in deep convolutional networks for visual recognition","volume":"37","author":"He","year":"2015","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.patrec.2021.11.017_bib0028","doi-asserted-by":"crossref","first-page":"108023","DOI":"10.1016\/j.patcog.2021.108023","article-title":"Efnet: enhancement-fusion network for semantic segmentation","volume":"118","author":"Wang","year":"2021","journal-title":"Pattern Recognit"}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865521004086?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865521004086?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T17:42:27Z","timestamp":1673286147000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865521004086"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":28,"alternative-id":["S0167865521004086"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2021.11.017","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Biomedical image segmentation based on full-Resolution network","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2021.11.017","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}