{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:04:05Z","timestamp":1728176645325},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,8,1]],"date-time":"2020-08-01T00:00:00Z","timestamp":1596240000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2020,8]]},"DOI":"10.1016\/j.patrec.2020.05.034","type":"journal-article","created":{"date-parts":[[2020,5,31]],"date-time":"2020-05-31T17:40:07Z","timestamp":1590946807000},"page":"142-153","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":35,"special_numbering":"C","title":["A computer vision system for automatic cherry beans detection on coffee trees"],"prefix":"10.1016","volume":"136","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7171-0179","authenticated-orcid":false,"given":"Jhonn Pablo","family":"Rodr\u00edguez","sequence":"first","affiliation":[]},{"given":"David Camilo","family":"Corrales","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6048-1553","authenticated-orcid":false,"given":"Jean-No\u00ebl","family":"Aubertot","sequence":"additional","affiliation":[]},{"given":"Juan Carlos","family":"Corrales","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2020.05.034_bib0001","author":"Abadi","year":"2015","journal-title":"Tensorflow: Large-Scale Mach. Learn. Heterog. Syst."},{"key":"10.1016\/j.patrec.2020.05.034_bib0002","unstructured":"Anacaf\u00e9. (2000). Semillas de las variedades de caf\u00e9 cultivadas por Anacaf\u00e9, Asociaci\u00f3n Nacional Del CaF\u00c9. http:\/\/www.anacafe.org\/glifos\/index.php?title=Variedades_del_cafe."},{"key":"10.1016\/j.patrec.2020.05.034_bib0003","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1016\/j.procs.2016.03.055","article-title":"Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry","volume":"79","author":"Arakeri","year":"2016","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.patrec.2020.05.034_bib0004","doi-asserted-by":"crossref","unstructured":"S. Bargoti, and J. Underwood. (2016). Image segmentation for fruit detection and yield estimation in apple orchards. arXiv:1610.08120 [cs].","DOI":"10.1002\/rob.21699"},{"key":"10.1016\/j.patrec.2020.05.034_bib0005","doi-asserted-by":"crossref","unstructured":"S. Bargoti, and J. Underwood. (2017). Deep fruit detection in orchards. arXiv:1610.03677 [cs].","DOI":"10.1109\/ICRA.2017.7989417"},{"issue":"3","key":"10.1016\/j.patrec.2020.05.034_bib0006","doi-asserted-by":"crossref","first-page":"2348","DOI":"10.1109\/LRA.2019.2903260","article-title":"Weakly supervised fruit counting for yield estimation using spatial consistency","volume":"4","author":"Bellocchio","year":"2019","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.patrec.2020.05.034_bib0007","article-title":"Fruits and vegetables quality evaluation using computer vision: a review","author":"Bhargava","year":"2018","journal-title":"J. King Saud Univ. - Comput. Inf. Sci."},{"issue":"2","key":"10.1016\/j.patrec.2020.05.034_bib0008","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.biosystemseng.2009.03.009","article-title":"Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features","volume":"103","author":"Blasco","year":"2009","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.patrec.2020.05.034_bib0009","author":"Bradski","year":"2008","journal-title":"Learn. Open CV, Comput. Vis. Open CV Libr."},{"key":"10.1016\/j.patrec.2020.05.034_bib0010","author":"Canny","year":"1983","journal-title":"Find. Edges Lines Images, Artif. Intell. Lab. 545 Technol. Sq. Camb."},{"issue":"2","key":"10.1016\/j.patrec.2020.05.034_bib0011","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1109\/LRA.2017.2651944","article-title":"Counting apples and oranges with deep learning: a data-driven approach","volume":"2","author":"Chen","year":"2017","journal-title":"IEEE Robot. Autom. Lett."},{"issue":"29","key":"10.1016\/j.patrec.2020.05.034_bib0012","doi-asserted-by":"crossref","first-page":"9","DOI":"10.18046\/syt.v12i29.1802","article-title":"A new dataset for coffee rust detection in Colombian crops base on classifiers","volume":"12","author":"Corrales","year":"2014","journal-title":"Sist. y Telem\u00e1tica"},{"key":"10.1016\/j.patrec.2020.05.034_bib0013","unstructured":"A. De la Escuela. (2001). Vision por computador. Fundamentos y metodos."},{"key":"10.1016\/j.patrec.2020.05.034_bib0014","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.jfoodeng.2015.10.009","article-title":"A computer vision system for coffee beans classification based on computational intelligence techniques","volume":"171","author":"de Oliveira","year":"2016","journal-title":"J. Food Eng."},{"key":"10.1016\/j.patrec.2020.05.034_bib0015","first-page":"981","article-title":"Review of application of mathematical morphology in crop disease recognition","volume":"2","author":"Diao","year":"2009"},{"key":"10.1016\/j.patrec.2020.05.034_bib0016","series-title":"2010 IEEE International Geoscience and Remote Sensing Symposium","first-page":"3194","author":"Erdenee","year":"2010"},{"key":"10.1016\/j.patrec.2020.05.034_bib0017","unstructured":"Federaci\u00f3n Nacional de Cafeteros. (2015). Ensayos Sobre Econ. Cafe. No.30."},{"key":"10.1016\/j.patrec.2020.05.034_bib0018","unstructured":"Federaci\u00f3n Nacional de Cafeteros de Colombia. (2019). Inf. Estad. Cafe.. www.federaciondecafeteros.org."},{"key":"10.1016\/j.patrec.2020.05.034_bib0019","doi-asserted-by":"crossref","first-page":"298","DOI":"10.1016\/j.measurement.2017.09.052","article-title":"Performance analysis of image thresholding: Otsu technique","volume":"114","author":"Goh","year":"2018","journal-title":"Measurement"},{"key":"10.1016\/j.patrec.2020.05.034_bib0020","article-title":"Immature green citrus fruit detection and counting based on fast normalized cross correlation (FNCC) using natural outdoor colour images","volume":"17","author":"Han","year":"2016","journal-title":"Precis. Agric."},{"key":"10.1016\/j.patrec.2020.05.034_bib0021","article-title":"A comparative study of fruit detection and counting methods for yield mapping in apple orchards","author":"H\u00e4ni","year":"2019","journal-title":"J. F. Robot."},{"issue":"3","key":"10.1016\/j.patrec.2020.05.034_bib0022","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/0167-8655(89)90055-X","article-title":"Erosion and dilation of binary images by arbitrary structuring elements using interval coding","volume":"9","author":"Ji","year":"1989","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2020.05.034_bib0023","first-page":"588","article-title":"A fast method for RGB to YCrCb conversion based on FPGA","author":"Jiang","year":"2013","journal-title":"Proc. 2013 3rd Int. Conf. Comput. Sci. Netw. Technol."},{"key":"10.1016\/j.patrec.2020.05.034_bib0024","article-title":"A review of the use of convolutional neural networks in agriculture","author":"Kamilaris","year":"2019","journal-title":"J. Agric. Sci."},{"issue":"3","key":"10.1016\/j.patrec.2020.05.034_bib0025","doi-asserted-by":"crossref","first-page":"897","DOI":"10.1016\/j.jfoodeng.2005.11.030","article-title":"A classification system for beans using computer vision system and artificial neural networks","volume":"78","author":"K\u0131l\u0131\u00e7","year":"2007","journal-title":"J. Food Eng."},{"key":"10.1016\/j.patrec.2020.05.034_bib0026","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1007\/978-1-4302-5930-5_7","article-title":"Ground truth data, content, metrics, and analysis. en s. krig (ed.","author":"Krig","year":"2014","journal-title":"Comput. Vis. Metr.: Surv., Taxon. Anal."},{"key":"10.1016\/j.patrec.2020.05.034_bib0027","author":"Krishnan","year":"2013","journal-title":"Pest Control Agric. Plant. Using Image Process."},{"key":"10.1016\/j.patrec.2020.05.034_bib0028","unstructured":"Labelimg Tool. (2015). Repository: https:\/\/github.com\/tzutalin\/labelImg. https:\/\/theailearner.com\/tag\/labelimg\/."},{"key":"10.1016\/j.patrec.2020.05.034_bib0029","unstructured":"T. Liu, S. Fang, Y. Zhao, P. Wang, and J. Zhang. (2015). Implementation of training convolutional neural networks. arXiv:1506.01195."},{"key":"10.1016\/j.patrec.2020.05.034_bib0030","series-title":"2011 4th International Congress on Image and Signal Processing","first-page":"798","article-title":"Parameters identification for blur image combining motion and defocus blurs using BP neural network","volume":"2","author":"Liu","year":"2011"},{"key":"10.1016\/j.patrec.2020.05.034_bib0031","series-title":"Desarrollo De Una Aplicaci\u00f3n Android Que Permita Procesar Y Almacenar Registros De Ramas De Caf\u00e9, Tesis De Maestr\u00eda En Ingenier\u00eda Electr\u00f3nica","author":"P\u00e9rez","year":"2017"},{"key":"10.1016\/j.patrec.2020.05.034_bib0032","article-title":"Advances in image processing for detection of plant diseases","author":"Patil","year":"2011","journal-title":"J. Adv. Bioinf. Appl. Res."},{"key":"10.1016\/j.patrec.2020.05.034_bib0033","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.compag.2018.08.001","article-title":"Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review","volume":"153","author":"Patr\u00edcio","year":"2018","journal-title":"Comput. Electron. Agric."},{"issue":"4","key":"10.1016\/j.patrec.2020.05.034_bib0034","doi-asserted-by":"crossref","first-page":"905","DOI":"10.3390\/s17040905","article-title":"Deep count: fruit counting based on deep simulated learning","volume":"17","author":"Rahnemoonfar","year":"2017","journal-title":"Sensors"},{"key":"10.1016\/j.patrec.2020.05.034_bib0035","author":"Ramos","year":"2015","journal-title":"Medici\u00f3n Del Porcentaje De Madurez En Ramas De Caf\u00e9 Mediante Dispositivos M\u00f3viles Y Visi\u00f3n Por Computador"},{"issue":"8","key":"10.1016\/j.patrec.2020.05.034_bib0036","doi-asserted-by":"crossref","first-page":"1222","DOI":"10.3390\/s16081222","article-title":"Deep fruits: a fruit detection system using deep neural networks","volume":"16","author":"Sa","year":"2016","journal-title":"Sensors"},{"key":"10.1016\/j.patrec.2020.05.034_bib0037","author":"Salton","year":"1983","journal-title":"Introduction to Modern Information Retrieval"},{"issue":"24","key":"10.1016\/j.patrec.2020.05.034_bib0038","doi-asserted-by":"crossref","first-page":"26647","DOI":"10.1007\/s11042-016-4191-7","article-title":"Soybean plant foliar disease detection using image retrieval approaches","volume":"76","author":"Shrivastava","year":"2017","journal-title":"Multimed. Tools Appl."},{"issue":"1915","key":"10.1016\/j.patrec.2020.05.034_bib0039","article-title":"Image based mango fruit detection, localisation and yield estimation using multiple view geometry","volume":"16","author":"Stein","year":"2016","journal-title":"Sensors 2016"},{"issue":"2","key":"10.1016\/j.patrec.2020.05.034_bib0040","first-page":"78","article-title":"Estimation of plant nitrogen content using digital image processing","volume":"15","author":"Tewari","year":"2013","journal-title":"Agric.l Eng. Int.: CIGR J."},{"key":"10.1016\/j.patrec.2020.05.034_bib0041","article-title":"Computer vision technology in agricultural automation\u2014a review","author":"Tian","year":"2019","journal-title":"Inf. Process. Agric."},{"key":"10.1016\/j.patrec.2020.05.034_bib0042","series-title":"Detecci\u00f3n De Bordes Mediante El Algoritmo De Canny","author":"Valverde-Rebaza","year":"2007"},{"key":"10.1016\/j.patrec.2020.05.034_bib0043","series-title":"2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","first-page":"345","article-title":"A novel framework for optimal rgb to grayscale image conversion","volume":"2","author":"Wan","year":"2016"}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865520302117?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865520302117?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,6,26]],"date-time":"2022-06-26T05:35:19Z","timestamp":1656221719000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865520302117"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8]]},"references-count":43,"alternative-id":["S0167865520302117"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2020.05.034","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2020,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A computer vision system for automatic cherry beans detection on coffee trees","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2020.05.034","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}