{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:16:30Z","timestamp":1742804190988,"version":"3.37.3"},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,7,1]],"date-time":"2019-07-01T00:00:00Z","timestamp":1561939200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61571268"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012271","name":"Shenzhen Fundamental Research Fund","doi-asserted-by":"publisher","award":["JCYJ20170412170438636"],"id":[{"id":"10.13039\/501100012271","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2019,7]]},"DOI":"10.1016\/j.patrec.2019.07.009","type":"journal-article","created":{"date-parts":[[2019,7,9]],"date-time":"2019-07-09T23:58:20Z","timestamp":1562716700000},"page":"668-676","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":27,"special_numbering":"C","title":["ECG-based personal recognition using a convolutional neural network"],"prefix":"10.1016","volume":"125","author":[{"given":"Yue","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9487-4515","authenticated-orcid":false,"given":"Zhibo","family":"Xiao","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8201-0864","authenticated-orcid":false,"given":"Zhenhua","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Ziliang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2019.07.009_bib0001","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/TCSVT.2003.818349","article-title":"An introduction to biometric recognition","volume":"14","author":"Jain","year":"2004","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.patrec.2019.07.009_bib0002","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.patrec.2015.12.013","article-title":"50 years of biometric research: accomplishments, challenges, and opportunities","volume":"79","author":"Jain","year":"2016","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2019.07.009_bib0003","first-page":"1","article-title":"ECG based human authentication using wavelets and random forests","volume":"2","author":"Belgacem","year":"2012","journal-title":"Int. J. Cryptogr. Inf. Secur."},{"key":"10.1016\/j.patrec.2019.07.009_bib0004","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2012\/904905","article-title":"Personal identification based on vectorcardiogram derived from limb leads electrocardiogram","volume":"2012","author":"Lee","year":"2012","journal-title":"J. Appl. Math."},{"key":"10.1016\/j.patrec.2019.07.009_bib0005","doi-asserted-by":"crossref","first-page":"808","DOI":"10.1109\/19.930458","article-title":"ECG analysis: a new approach in human identification","volume":"50","author":"Biel","year":"2001","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.patrec.2019.07.009_bib0006","series-title":"Proceedings of the Twenty-Third Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001","first-page":"3721","article-title":"Development of an ECG identification system","author":"Kyoso","year":"2001"},{"key":"10.1016\/j.patrec.2019.07.009_bib0007","series-title":"Proceedings of the IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS)","first-page":"1","article-title":"Finger ECG signal for user authentication: usability and performance","author":"Da Silva","year":"2013"},{"key":"10.1016\/j.patrec.2019.07.009_bib0008","doi-asserted-by":"crossref","first-page":"1323","DOI":"10.1109\/TIFS.2018.2876838","article-title":"Cancelable biometric recognition with ECGs: subspace-based approaches","volume":"14","author":"Wu","year":"2019","journal-title":"IEEE Trans. Inf. Forensic Secur."},{"key":"10.1016\/j.patrec.2019.07.009_bib0009","doi-asserted-by":"crossref","first-page":"2002","DOI":"10.1109\/TIFS.2014.2360430","article-title":"On evaluating ECG biometric systems: session-dependence and body posture","volume":"9","author":"Wahabi","year":"2014","journal-title":"IEEE Trans. Inf. Forensic Secur."},{"key":"10.1016\/j.patrec.2019.07.009_bib0010","series-title":"Evaluating Template Uniqueness in ECG biometrics, Informatics in Control, Automation and Robotics","first-page":"111","author":"Carreiras","year":"2016"},{"issue":"43","key":"10.1016\/j.patrec.2019.07.009_bib0011","first-page":"41","article-title":"A survey of wearable biometric recognition systems","volume":"49","author":"Blasco","year":"2016","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.patrec.2019.07.009_bib0012","doi-asserted-by":"crossref","first-page":"1810","DOI":"10.1109\/TIFS.2018.2804890","article-title":"Liveness detection and automatic template updating using fusion of ECG and fingerprint","volume":"13","author":"Komeili","year":"2018","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.patrec.2019.07.009_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.patrec.2017.12.017","article-title":"PhysioUnicaDB: a dataset of EEG and ECG simultaneously acquired","author":"Barra","year":"2017","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2019.07.009_bib0014","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.neucom.2018.12.015","article-title":"Human identification using finger vein and ECG signals","volume":"332","author":"Su","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patrec.2019.07.009_bib0015","first-page":"1","article-title":"Human identification using QT signal and QRS complex of the ECG","volume":"3","author":"Tawfik","year":"2011","journal-title":"Online J. Electron. Electr. Eng. (OJEEE)"},{"key":"10.1016\/j.patrec.2019.07.009_bib0016","series-title":"Proceedings of the CVPR","first-page":"1","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.patrec.2019.07.009_bib0017","first-page":"770","article-title":"Deep residual learning for image recognition","volume":"1","author":"He","year":"2016","journal-title":"Comput. Vis. Pattern Recognit."},{"key":"10.1016\/j.patrec.2019.07.009_bib0018","doi-asserted-by":"crossref","first-page":"1812","DOI":"10.1109\/TIFS.2012.2215324","article-title":"ECG biometric recognition: a comparative analysis","volume":"7","author":"Odinaka","year":"2012","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"10.1016\/j.patrec.2019.07.009_bib0019","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1186\/s12938-015-0072-y","article-title":"Individual identification via electrocardiogram analysis","volume":"14","author":"Fratini","year":"2015","journal-title":"Biomed. Eng. Online"},{"key":"10.1016\/j.patrec.2019.07.009_bib0020","doi-asserted-by":"crossref","first-page":"34746","DOI":"10.1109\/ACCESS.2018.2849870","article-title":"Evolution, current challenges, and future possibilities in ECG biometrics","volume":"6","author":"Pinto","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.patrec.2019.07.009_bib0021","doi-asserted-by":"crossref","first-page":"6832","DOI":"10.3390\/s130506832","article-title":"A human ECG identification system based on ensemble empirical mode decomposition","volume":"13","author":"Zhao","year":"2013","journal-title":"Sensors"},{"key":"10.1016\/j.patrec.2019.07.009_bib0022","series-title":"Proceedings of the IEEE International Conference on Acoustics, speech and signal processing (ICASSP)","first-page":"2062","article-title":"ECG-based biometrics using recurrent neural networks","author":"Salloum","year":"2017"},{"key":"10.1016\/j.patrec.2019.07.009_bib0023","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1007\/s10439-017-1944-z","article-title":"Deep Arm\/Ear-ECG image learning for highly wearable biometric human identification","volume":"46","author":"Zhang","year":"2017","journal-title":"Ann. Biomed. Eng."},{"key":"10.1016\/j.patrec.2019.07.009_bib0024","article-title":"Deep-ECG: convolultional neural networks for ECG biometric recognition","author":"Labati","year":"2018","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2019.07.009_bib0025","first-page":"759","volume":"68","author":"Loong","year":"2010"},{"key":"10.1016\/j.patrec.2019.07.009_bib0026","series-title":"Proceedings of the Biometric Consortium Conference, 2006 Biometrics Symposium: Special Session on Research","first-page":"1","article-title":"ECG biometric recognition without fiducial detection","author":"Plataniotis","year":"2006"},{"key":"10.1016\/j.patrec.2019.07.009_bib0027","doi-asserted-by":"crossref","first-page":"937","DOI":"10.1109\/LSP.2013.2267593","article-title":"Human identification from ECG signals via sparse representation of local segments","volume":"20","author":"Wang","year":"2013","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.patrec.2019.07.009_bib0028","doi-asserted-by":"crossref","first-page":"11805","DOI":"10.1109\/ACCESS.2017.2707460","article-title":"HeartID: a multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications","volume":"5","author":"Zhang","year":"2017","journal-title":"IEEE Access"},{"key":"10.1016\/j.patrec.2019.07.009_bib0029","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.patrec.2019.07.009_bib0030","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.knosys.2017.06.003","article-title":"Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network","volume":"132","author":"Acharya","year":"2017","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.patrec.2019.07.009_bib0031","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1007\/s10489-018-1179-1","article-title":"Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals","volume":"49","author":"Acharya","year":"2019","journal-title":"Appl. Intell."},{"key":"10.1016\/j.patrec.2019.07.009_bib0032","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.patrec.2019.07.009_bib0033","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.neucom.2013.02.010","article-title":"An adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks","volume":"117","author":"Poungponsri","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patrec.2019.07.009_bib0034","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.patrec.2019.07.009_bib0035","doi-asserted-by":"crossref","first-page":"1318","DOI":"10.1016\/j.patcog.2011.09.021","article-title":"A novel hybrid CNN\u2013SVM classifier for recognizing handwritten digits","volume":"45","author":"Niu","year":"2012","journal-title":"Pattern Recognit."},{"unstructured":"Tang, Y., 2013a. Deep learning using linear support vector machines. arXiv:1306.0239.","key":"10.1016\/j.patrec.2019.07.009_bib0036"},{"key":"10.1016\/j.patrec.2019.07.009_bib0037","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops","first-page":"806","article-title":"CNN features off-the-shelf: an astounding baseline for recognition","author":"Sharif Razavian","year":"2014"},{"key":"10.1016\/j.patrec.2019.07.009_bib0038","doi-asserted-by":"crossref","first-page":"e215","DOI":"10.1161\/01.CIR.101.23.e215","article-title":"Physiobank, physiotoolkit, and physionet","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"},{"key":"10.1016\/j.patrec.2019.07.009_bib0039","series-title":"Proceedings of the XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013","first-page":"962","article-title":"Differences in QRS locations due to ECG lead: relationship with breathing","author":"Garcia-Gonzalez","year":"2014"},{"key":"10.1016\/j.patrec.2019.07.009_bib0040","series-title":"Computing in Cardiology Conference","first-page":"461","article-title":"A comparison of heartbeat detectors for the seismocardiogram","author":"Garcia-Gonzalez","year":"2013"},{"key":"10.1016\/j.patrec.2019.07.009_bib0041","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/51.932724","article-title":"The impact of the MIT-BIH arrhythmia database","volume":"20","author":"Moody","year":"2001","journal-title":"IEEE Eng. Med. Biol. Mag."},{"unstructured":"Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467.","key":"10.1016\/j.patrec.2019.07.009_bib0042"},{"unstructured":"Kingma, D., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv:1412.6980.","key":"10.1016\/j.patrec.2019.07.009_bib0043"},{"key":"10.1016\/j.patrec.2019.07.009_bib0044","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/S0735-1097(00)01054-8","article-title":"Age-predicted maximal heart rate revisited","volume":"37","author":"Tanaka","year":"2001","journal-title":"J. Am. Coll. Cardiol."},{"key":"10.1016\/j.patrec.2019.07.009_bib0045","doi-asserted-by":"crossref","first-page":"4759","DOI":"10.1109\/ACCESS.2017.2771220","article-title":"Research and implementation of ECG-Based biological recognition parallelization","volume":"6","author":"Miao","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.patrec.2019.07.009_bib0046","doi-asserted-by":"crossref","first-page":"4645","DOI":"10.1109\/TNNLS.2017.2772264","article-title":"Marginal representation learning with graph structure self-adaptation","volume":"29","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.patrec.2019.07.009_bib0047","doi-asserted-by":"crossref","first-page":"3111","DOI":"10.1109\/TNNLS.2017.2712801","article-title":"Discriminative block-diagonal representation learning for image recognition","volume":"29","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.patrec.2019.07.009_bib0048","doi-asserted-by":"crossref","first-page":"1774","DOI":"10.1109\/TPAMI.2018.2847335","article-title":"Binary multi-view clustering","volume":"41","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865519302004?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865519302004?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,20]],"date-time":"2024-07-20T20:16:29Z","timestamp":1721506589000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865519302004"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,7]]},"references-count":48,"alternative-id":["S0167865519302004"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2019.07.009","relation":{},"ISSN":["0167-8655"],"issn-type":[{"type":"print","value":"0167-8655"}],"subject":[],"published":{"date-parts":[[2019,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"ECG-based personal recognition using a convolutional neural network","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2019.07.009","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}