{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:16:31Z","timestamp":1740111391537,"version":"3.37.3"},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61502387","61702415","61802335"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100011710","name":"Shaanxi Province","doi-asserted-by":"publisher","award":["20180108"],"id":[{"id":"10.13039\/501100011710","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007128","name":"Natural Science Foundation of Shaanxi Province","doi-asserted-by":"publisher","award":["2016JQ6029"],"id":[{"id":"10.13039\/501100007128","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1016\/j.patrec.2018.10.010","type":"journal-article","created":{"date-parts":[[2018,10,10]],"date-time":"2018-10-10T06:30:25Z","timestamp":1539153025000},"page":"107-115","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["General model for linear information extraction based on the shear transformation"],"prefix":"10.1016","volume":"130","author":[{"given":"Pengfei","family":"Xu","sequence":"first","affiliation":[]},{"given":"Jun","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Yun","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Qishou","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Baoying","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2018.10.010_bib0001","series-title":"Readings in Computer Vision","first-page":"184","article-title":"A computational approach to edge detection","author":"Canny","year":"1987"},{"issue":"8","key":"10.1016\/j.patrec.2018.10.010_bib0002","doi-asserted-by":"crossref","first-page":"3911","DOI":"10.1109\/TIP.2017.2708506","article-title":"Feature interaction augmented sparse learning for fast kinect motion detection","volume":"26","author":"Chang","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"7","key":"10.1016\/j.patrec.2018.10.010_bib0003","doi-asserted-by":"crossref","first-page":"1502","DOI":"10.1109\/TNNLS.2015.2441735","article-title":"Compound rank-k projections for bilinear analysis","volume":"27","author":"Chang","year":"2016","journal-title":"IEEE Trans. Neural Network Learn. Syst."},{"issue":"4","key":"10.1016\/j.patrec.2018.10.010_bib0004","doi-asserted-by":"crossref","first-page":"1048","DOI":"10.1109\/TGRS.2005.861478","article-title":"Extracting contour lines from common-conditioned topographic maps","volume":"44","author":"Chen","year":"2006","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.patrec.2018.10.010_bib0005","unstructured":"E. Detector, accessed on dec. 1999 [online], (Available: http:\/\/figment.csee.usf.edu\/edge\/roc\/)."},{"issue":"11","key":"10.1016\/j.patrec.2018.10.010_bib0006","doi-asserted-by":"crossref","first-page":"3768","DOI":"10.1109\/TIP.2015.2451175","article-title":"Edges and corners with shearlets","volume":"24","author":"Duval-Poo","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patrec.2018.10.010_bib0007","series-title":"2017 Int. Conf. Comput., Commun. Autom. (ICCCA)","first-page":"1076","article-title":"Finding the optimal threshold values for edge detection of digital images and comparing among bacterial foraging algorithm, canny and sobel edge detector","author":"Goel","year":"2017"},{"issue":"1","key":"10.1016\/j.patrec.2018.10.010_bib0008","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/S0734-189X(88)80033-1","article-title":"A survey of the hough transform","volume":"44","author":"Illingworth","year":"1988","journal-title":"Computer Vision, Graphics, Image Process."},{"issue":"5","key":"10.1016\/j.patrec.2018.10.010_bib0009","doi-asserted-by":"crossref","first-page":"1166","DOI":"10.1109\/TIP.2010.2041410","article-title":"The discrete shearlet transform: a new directional transform and compactly supported shearlet frames","volume":"19","author":"Lim","year":"2010","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patrec.2018.10.010_bib0010","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.cviu.2017.07.001","article-title":"Simple to complex crossmodal learning to rank","volume":"163","author":"Luo","year":"2017","journal-title":"Comput. Vision Image Understanding"},{"issue":"2","key":"10.1016\/j.patrec.2018.10.010_bib0011","doi-asserted-by":"crossref","first-page":"648","DOI":"10.1109\/TCYB.2017.2647904","article-title":"An adaptive semisupervised feature analysis for video semantic recognition","volume":"48","author":"Luo","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.patrec.2018.10.010_bib0012","first-page":"2921","article-title":"Joint attributes and event analysis for multimedia event detection","volume":"29","author":"Ma","year":"2018","journal-title":"IEEE Trans. Neural Network Learn. Syst."},{"key":"10.1016\/j.patrec.2018.10.010_bib0013","doi-asserted-by":"crossref","DOI":"10.13053\/rcs-132-1-9","article-title":"Arabic text detection in news video based on line segment detector","author":"Mansouri","year":"2017","journal-title":"Res. Comput. Sci."},{"key":"10.1016\/j.patrec.2018.10.010_bib0014","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.micron.2017.12.002","article-title":"Automatic detection of particle size distribution by image analysis based on local adaptive canny edge detection and modified circular hough transform","volume":"106","author":"Meng","year":"2018","journal-title":"Micron"},{"issue":"6","key":"10.1016\/j.patrec.2018.10.010_bib0015","doi-asserted-by":"crossref","first-page":"2751","DOI":"10.1109\/TIP.2016.2613409","article-title":"The recognition of the point symbols in the scanned topographic maps","volume":"26","author":"Miao","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patrec.2018.10.010_bib0016","doi-asserted-by":"crossref","first-page":"808","DOI":"10.1016\/j.neucom.2015.05.043","article-title":"A novel fast image segmentation algorithm for large topographic maps","volume":"168","author":"Miao","year":"2015","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.patrec.2018.10.010_bib0017","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TIP.2012.2233487","article-title":"Linear feature separation from topographic maps using energy density and the shear transform","volume":"22","author":"Miao","year":"2013","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.patrec.2018.10.010_bib0018","doi-asserted-by":"crossref","first-page":"3680","DOI":"10.1109\/TCYB.2016.2577590","article-title":"Multiview physician-specific attributes fusion for health seeking","volume":"47","author":"Nie","year":"2017","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.patrec.2018.10.010_bib0019","doi-asserted-by":"crossref","first-page":"2000","DOI":"10.1109\/ICPR.2016.7899930","article-title":"Multiscale line segment detector for robust and accurate sfm","author":"Salan","year":"2016","journal-title":"2016 23rd International Conference on Pattern Recognition (ICPR)"},{"key":"10.1016\/j.patrec.2018.10.010_bib0020","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/j.neucom.2013.09.023","article-title":"Power line detection from optical images","volume":"129","author":"Song","year":"2014","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.patrec.2018.10.010_bib0021","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1109\/TFUZZ.2016.2551289","article-title":"An optimal fuzzy system for edge detection in color images using bacterial foraging algorithm","volume":"25","author":"Verma","year":"2017","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"4","key":"10.1016\/j.patrec.2018.10.010_bib0022","doi-asserted-by":"crossref","first-page":"722","DOI":"10.1109\/TPAMI.2008.300","article-title":"Lsd: a fast line segment detector with a false detection control","volume":"32","author":"Von Gioi","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.patrec.2018.10.010_bib0023","doi-asserted-by":"crossref","first-page":"2973","DOI":"10.1007\/s11042-017-4688-8","article-title":"Artistic features extraction from chinese calligraphy works via regional guided filter with reference image","volume":"77","author":"Wang","year":"2018","journal-title":"Multimed. Tools Appl."},{"issue":"3","key":"10.1016\/j.patrec.2018.10.010_bib0024","first-page":"1","article-title":"Learning multiple diagnosis codes for icu patients with local disease correlation mining","volume":"11","author":"Wang","year":"2017","journal-title":"ACM Trans. Knowl. Disc. Data (TKDD)"},{"issue":"17","key":"10.1016\/j.patrec.2018.10.010_bib0025","doi-asserted-by":"crossref","first-page":"17839","DOI":"10.1007\/s11042-015-3097-0","article-title":"Towards a novel image denoising method with edge-preserving sparse representation based on laplacian of b-spline edge-detection","volume":"76","author":"Xu","year":"2017","journal-title":"Multimed. Tools Appl."},{"issue":"5","key":"10.1016\/j.patrec.2018.10.010_bib0026","doi-asserted-by":"crossref","first-page":"827","DOI":"10.1016\/j.jvcir.2012.04.008","article-title":"An edge detection algorithm based on the multi-direction shear transform","volume":"23","author":"Xu","year":"2012","journal-title":"J. Vis. Commun. Image Represent."},{"issue":"7","key":"10.1016\/j.patrec.2018.10.010_bib0027","doi-asserted-by":"crossref","first-page":"839","DOI":"10.1049\/iet-ipr.2011.0259","article-title":"General method for edge detection based on the shear transform","volume":"6","author":"Xu","year":"2012","journal-title":"IET Image Process."},{"key":"10.1016\/j.patrec.2018.10.010_bib0028","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1016\/j.jvcir.2016.07.012","article-title":"Artistic information extraction from chinese calligraphy works via shear-guided filter","volume":"40","author":"Xu","year":"2016","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.patrec.2018.10.010_bib0029","series-title":"2018 Chin. Control Decis. Conf.","first-page":"400","article-title":"A new edge detection method of magnetic flux leakage image based on wavelet multi-scale registration and modulus maximum","author":"Xu","year":"2018"},{"issue":"3","key":"10.1016\/j.patrec.2018.10.010_bib0030","doi-asserted-by":"crossref","first-page":"813","DOI":"10.1109\/TIP.2014.2387020","article-title":"Accurate and robust line segment extraction using minimum entropy with hough transform","volume":"24","author":"Xu","year":"2015","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.patrec.2018.10.010_bib0031","doi-asserted-by":"crossref","first-page":"2890","DOI":"10.1109\/TAES.2014.120732","article-title":"Pylon line spatial correlation assisted transmission line detection","volume":"50","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"10.1016\/j.patrec.2018.10.010_bib0032","series-title":"A high performance real-time edge detection system with neon","first-page":"847","author":"Zhang","year":"2017"},{"issue":"14","key":"10.1016\/j.patrec.2018.10.010_bib0033","doi-asserted-by":"crossref","first-page":"8719","DOI":"10.1007\/s11042-015-2788-x","article-title":"A new artistic information extraction method with multi channels and guided filters for calligraphy works","volume":"75","author":"Zheng","year":"2016","journal-title":"Multimedia Tools Appl."},{"issue":"9","key":"10.1016\/j.patrec.2018.10.010_bib0034","doi-asserted-by":"crossref","first-page":"2066","DOI":"10.1109\/TMM.2017.2729025","article-title":"Discrete multimodal hashing with canonical views for robust mobile landmark search","volume":"19","author":"Zhu","year":"2017","journal-title":"IEEE Trans. Multimedia"},{"issue":"12","key":"10.1016\/j.patrec.2018.10.010_bib0035","doi-asserted-by":"crossref","first-page":"2756","DOI":"10.1109\/TCYB.2014.2383389","article-title":"Content-based visual landmark search via multimodal hypergraph learning","volume":"45","author":"Zhu","year":"2015","journal-title":"IEEE Trans. Cybern."},{"issue":"7","key":"10.1016\/j.patrec.2018.10.010_bib0036","doi-asserted-by":"crossref","first-page":"981","DOI":"10.1109\/TMM.2015.2431496","article-title":"Landmark classification with hierarchical multi-modal exemplar feature","volume":"17","author":"Zhu","year":"2015","journal-title":"IEEE Trans. Multimedia"},{"issue":"11","key":"10.1016\/j.patrec.2018.10.010_bib0037","doi-asserted-by":"crossref","first-page":"3941","DOI":"10.1109\/TCYB.2016.2591068","article-title":"Unsupervised topic hypergraph hashing for efficient mobile image retrieval","volume":"47","author":"Zhu","year":"2017","journal-title":"IEEE Trans. Cybern."},{"issue":"2","key":"10.1016\/j.patrec.2018.10.010_bib0038","doi-asserted-by":"crossref","first-page":"472","DOI":"10.1109\/TKDE.2016.2562624","article-title":"Unsupervised visual hashing with semantic assistant for content-based image retrieval","volume":"29","author":"Zhu","year":"2017","journal-title":"IEEE Trans. Knowl. Data Eng."}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865518308134?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865518308134?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,12]],"date-time":"2020-11-12T15:00:55Z","timestamp":1605193255000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865518308134"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2]]},"references-count":38,"alternative-id":["S0167865518308134"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2018.10.010","relation":{},"ISSN":["0167-8655"],"issn-type":[{"type":"print","value":"0167-8655"}],"subject":[],"published":{"date-parts":[[2020,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"General model for linear information extraction based on the shear transformation","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2018.10.010","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}