{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T19:12:56Z","timestamp":1723403576133},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,9,1]],"date-time":"2018-09-01T00:00:00Z","timestamp":1535760000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2018,9]]},"DOI":"10.1016\/j.patrec.2018.06.006","type":"journal-article","created":{"date-parts":[[2018,6,5]],"date-time":"2018-06-05T21:55:29Z","timestamp":1528235729000},"page":"63-69","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["Structured sparse K-means clustering via Laplacian smoothing"],"prefix":"10.1016","volume":"112","author":[{"given":"Weikang","family":"Gong","sequence":"first","affiliation":[]},{"given":"Renbo","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Stefan","family":"Gr\u00fcnewald","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.patrec.2018.06.006_bib0001","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1007\/s10994-009-5103-0","article-title":"Np-hardness of euclidean sum-of-squares clustering","volume":"75","author":"Aloise","year":"2009","journal-title":"Mach. Learn."},{"issue":"4","key":"10.1016\/j.patrec.2018.06.006_bib0002","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1007\/s10791-008-9066-8","article-title":"A comparison of extrinsic clustering evaluation metrics based on formal constraints","volume":"12","author":"Amig\u00f3","year":"2009","journal-title":"Inf. Retr. Boston"},{"key":"10.1016\/j.patrec.2018.06.006_bib0003","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.ins.2015.06.039","article-title":"Recovering the number of clusters in data sets with noise features using feature rescaling factors","volume":"324","author":"de Amorim","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.patrec.2018.06.006_bib0004","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/j.csda.2016.08.003","article-title":"A simple approach to sparse clustering","volume":"105","author":"Arias-Castro","year":"2017","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.patrec.2018.06.006_bib0005","series-title":"Proc. COLING-ACL, Montreal, Quebec, Canada","first-page":"79","article-title":"Entity-based cross-document coreferencing using the vector space model","author":"Bagga","year":"1998"},{"key":"10.1016\/j.patrec.2018.06.006_bib0006","first-page":"1705","article-title":"Clustering with Bregman divergences","volume":"6","author":"Banerjee","year":"2005","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patrec.2018.06.006_bib0007","series-title":"Proc. NIPS","first-page":"953","article-title":"Using manifold structure for partially labelled classification","author":"Belkin","year":"2002"},{"key":"10.1016\/j.patrec.2018.06.006_bib0008","series-title":"Proc. COLT, Bertinoro, Italy","first-page":"486","article-title":"Towards a theoretical foundation for Laplacian-based manifold methods","author":"Belkin","year":"2005"},{"key":"10.1016\/j.patrec.2018.06.006_bib0009","first-page":"2399","article-title":"Manifold regularization: a geometric framework for learning from labeled and unlabeled examples","volume":"7","author":"Belkin","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patrec.2018.06.006_bib0010","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1111\/j.2517-6161.1995.tb02031.x","article-title":"Controlling the false discovery rate: a practical and powerful approach to multiple testing","author":"Benjamini","year":"1995","journal-title":"J. R. Stat. Soc. Ser. B (Methodol.)"},{"key":"10.1016\/j.patrec.2018.06.006_bib0011","series-title":"Nonlinear Programming","author":"Bertsekas","year":"1999"},{"issue":"3","key":"10.1016\/j.patrec.2018.06.006_bib0012","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/0041-5553(67)90040-7","article-title":"The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming","volume":"7","author":"Bregman","year":"1967","journal-title":"USSR Comput. Math. Math. Phys."},{"key":"10.1016\/j.patrec.2018.06.006_bib0013","series-title":"Spectral Graph Theory","author":"Chung","year":"1997"},{"key":"10.1016\/j.patrec.2018.06.006_bib0014","series-title":"Proc. ICML","first-page":"201","article-title":"Fitting a graph to vector data","author":"Daitch","year":"2009"},{"key":"10.1016\/j.patrec.2018.06.006_bib0015","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patrec.2018.06.006_bib0016","series-title":"Proc. NIPS, Barcelona, Spain","first-page":"4610","article-title":"Learning brain regions via large-scale online structured sparse dictionary learning","author":"Dohmatob","year":"2016"},{"issue":"23","key":"10.1016\/j.patrec.2018.06.006_bib0017","doi-asserted-by":"crossref","first-page":"6160","DOI":"10.1109\/TSP.2016.2602809","article-title":"Learning laplacian matrix in smooth graph signal representations","volume":"64","author":"Dong","year":"2016","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.patrec.2018.06.006_bib0018","series-title":"Proc. ICML, Helsinki, Finland","first-page":"272","article-title":"Efficient projections onto the l1-ball for learning in high dimensions","author":"Duchi","year":"2008"},{"key":"10.1016\/j.patrec.2018.06.006_bib0019","doi-asserted-by":"crossref","first-page":"815","DOI":"10.1111\/j.1467-9868.2004.02059.x","article-title":"Clustering objects on subsets of attributes","volume":"66","author":"Friedman","year":"2004","journal-title":"J. Royal Stat. Soc. Ser. B"},{"issue":"5439","key":"10.1016\/j.patrec.2018.06.006_bib0020","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1126\/science.286.5439.531","article-title":"Molecular classification of cancer: class discovery and class prediction by gene expression monitoring","volume":"286","author":"Golub","year":"1999","journal-title":"Science"},{"key":"10.1016\/j.patrec.2018.06.006_bib0021","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/j.neuroimage.2012.12.062","article-title":"Interpretable whole-brain prediction analysis with graphnet","volume":"72","author":"Grosenick","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.patrec.2018.06.006_bib0022","unstructured":"GSEA & MSigDB Team, 2017, Molecular signatures database v6.0, URL: http:\/\/software.broadinstitute.org\/gsea\/msigdb\/index.jsp."},{"issue":"6","key":"10.1016\/j.patrec.2018.06.006_bib0023","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1214\/15-AOS1423","article-title":"Influential features pca for high dimensional clustering","volume":"44","author":"Jin","year":"2016","journal-title":"Ann. Stat."},{"key":"10.1016\/j.patrec.2018.06.006_bib0024","doi-asserted-by":"crossref","first-page":"937","DOI":"10.1016\/j.neuroimage.2013.07.019","article-title":"Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest","volume":"83","author":"Leonardi","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.patrec.2018.06.006_bib0025","series-title":"Proc. ISBI, Chicago, IL, USA","first-page":"2136","article-title":"Wavelet frames on graphs defined by fmri functional connectivity","author":"Leonardi","year":"2011"},{"key":"10.1016\/j.patrec.2018.06.006_bib0026","series-title":"Proc. NIPS, Barcelona, Spain","first-page":"2351","article-title":"Clustering with bregman divergences: an asymptotic analysis","author":"Liu","year":"2016"},{"issue":"4","key":"10.1016\/j.patrec.2018.06.006_bib0027","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","article-title":"A tutorial on spectral clustering","volume":"17","author":"Luxburg","year":"2007","journal-title":"Stat. Comput."},{"key":"10.1016\/j.patrec.2018.06.006_bib0028","series-title":"Proc. Berkeley Symp. Math. Stat. Probab., Berkeley, CA, USA","first-page":"281","article-title":"Some methods for classification and analysis of multivariate observations","author":"MacQueen","year":"1967"},{"issue":"11","key":"10.1016\/j.patrec.2018.06.006_bib0029","doi-asserted-by":"crossref","DOI":"10.1145\/219717.219748","article-title":"Wordnet: a lexical database for english","volume":"38","author":"Miller","year":"1995","journal-title":"Commun. ACM"},{"issue":"1","key":"10.1016\/j.patrec.2018.06.006_bib0030","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1093\/nar\/27.1.29","article-title":"Kegg: kyoto encyclopedia of genes and genomes","volume":"27","author":"Ogata","year":"1999","journal-title":"Nucleic Acids Res."},{"key":"10.1016\/j.patrec.2018.06.006_bib0031","first-page":"1145","article-title":"Penalized model-based clustering with application to variable selection","volume":"8","author":"Pan","year":"2007","journal-title":"J. Mach. Learn. Res."},{"issue":"336","key":"10.1016\/j.patrec.2018.06.006_bib0032","doi-asserted-by":"crossref","first-page":"846","DOI":"10.1080\/01621459.1971.10482356","article-title":"Objective criteria for the evaluation of clustering methods","volume":"66","author":"Rand","year":"1971","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.patrec.2018.06.006_bib0033","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/0377-0427(87)90125-7","article-title":"Silhouettes: a graphical aid to the interpretation and validation of cluster analysis","volume":"20","author":"Rousseeuw","year":"1987","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.patrec.2018.06.006_bib0034","series-title":"Proc. AISTATS, Cadiz, Spain","article-title":"Graph sparsifcation approaches for laplacian smoothing","author":"Sadhanala","year":"2016"},{"key":"10.1016\/j.patrec.2018.06.006_bib0035","series-title":"Proc. WACV, Sarasota, Florida, USA","first-page":"138","article-title":"Parameterisation of a stochastic model for human face identification","author":"Samaria","year":"1994"},{"issue":"2","key":"10.1016\/j.patrec.2018.06.006_bib0036","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1111\/j.2517-6161.1974.tb00994.x","article-title":"Cross-validatory choice and assessment of statistical predictions","volume":"36","author":"Stone","year":"1974","journal-title":"J. Royal Stat. Soc."},{"issue":"43","key":"10.1016\/j.patrec.2018.06.006_bib0037","doi-asserted-by":"crossref","first-page":"15545","DOI":"10.1073\/pnas.0506580102","article-title":"Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles","volume":"102","author":"Subramanian","year":"2005","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"463","key":"10.1016\/j.patrec.2018.06.006_bib0038","doi-asserted-by":"crossref","first-page":"750","DOI":"10.1198\/016214503000000666","article-title":"Finding the number of clusters in a dataset","volume":"98","author":"Sugar","year":"2003","journal-title":"J. Amer. Stat. Assoc."},{"key":"10.1016\/j.patrec.2018.06.006_bib0039","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1214\/12-EJS668","article-title":"Regularized k-means clustering of high-dimensional data and its asymptotic consistency","volume":"6","author":"Sun","year":"2012","journal-title":"Electron. J. Stat."},{"key":"10.1016\/j.patrec.2018.06.006_bib0040","unstructured":"W. Tansey, J.G. Scott, A fast and flexible algorithm for the graph-fused lasso, 2015, arXiv:1505.06475."},{"issue":"1","key":"10.1016\/j.patrec.2018.06.006_bib0041","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1111\/j.1467-9868.2005.00490.x","article-title":"Sparsity and smoothness via the fused lasso","volume":"67","author":"Tibshirani","year":"2005","journal-title":"J. R. Stat. Soc. Ser. B"},{"issue":"3","key":"10.1016\/j.patrec.2018.06.006_bib0042","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1198\/106186005X59243","article-title":"Cluster validation by prediction strength","volume":"14","author":"Tibshirani","year":"2005","journal-title":"J. Comput. Graph. Stat."},{"issue":"2","key":"10.1016\/j.patrec.2018.06.006_bib0043","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1111\/1467-9868.00293","article-title":"Estimating the number of clusters in a data set via the gap statistic","volume":"63","author":"Tibshirani","year":"2001","journal-title":"J. R. Stat. Soc. B"},{"key":"10.1016\/j.patrec.2018.06.006_bib0044","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1111\/j.1541-0420.2007.00922.x","article-title":"Variable selection for model-based high-dimensional clustering and its application to microarray data","volume":"64","author":"Wang","year":"2008","journal-title":"Biometrics"},{"issue":"6","key":"10.1016\/j.patrec.2018.06.006_bib0045","doi-asserted-by":"crossref","first-page":"80","DOI":"10.2307\/3001968","article-title":"Individual comparisons by ranking methods","volume":"1","author":"Wilcoxon","year":"1945","journal-title":"Biom. Bull."},{"issue":"490","key":"10.1016\/j.patrec.2018.06.006_bib0046","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1198\/jasa.2010.tm09415","article-title":"A framework for feature selection in clustering","volume":"105","author":"Witten","year":"2010","journal-title":"J. Amer. Stat. Assoc."},{"issue":"4","key":"10.1016\/j.patrec.2018.06.006_bib0047","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2847421","article-title":"Efficient generalized fused lasso and its applications","volume":"7","author":"Xin","year":"2016","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"10.1016\/j.patrec.2018.06.006_bib0048","series-title":"Proc. ICML, Bonn, Germany","first-page":"1036","article-title":"Learning from labeled and unlabeled data on a directed graph","author":"Zhou","year":"2005"}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865518302290?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865518302290?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T08:54:00Z","timestamp":1720342440000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865518302290"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,9]]},"references-count":48,"alternative-id":["S0167865518302290"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2018.06.006","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2018,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Structured sparse K-means clustering via Laplacian smoothing","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2018.06.006","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}