{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T23:27:25Z","timestamp":1720049245116},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2017,1]]},"DOI":"10.1016\/j.patrec.2016.12.018","type":"journal-article","created":{"date-parts":[[2016,12,23]],"date-time":"2016-12-23T10:20:17Z","timestamp":1482488417000},"page":"31-37","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["A versatile EEG spike detector with multivariate matrix of features based on the linear discriminant analysis, combined wavelets, and descriptors"],"prefix":"10.1016","volume":"86","author":[{"given":"Edras","family":"Pacola","sequence":"first","affiliation":[]},{"given":"Veronica","family":"Quandt","sequence":"additional","affiliation":[]},{"given":"Paulo","family":"Liberalesso","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4380-7499","authenticated-orcid":false,"given":"S\u00e9rgio","family":"Pichorim","sequence":"additional","affiliation":[]},{"given":"F\u00e1bio","family":"Schneider","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3210-2725","authenticated-orcid":false,"given":"Humberto","family":"Gamba","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2016.12.018_bib0001","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.knosys.2013.02.014","article-title":"Automated EEG analysis of epilepsy: a review","volume":"45","author":"Acharya","year":"2013","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.patrec.2016.12.018_bib0002","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.compbiomed.2014.11.013","article-title":"Automatic detection of epileptic seizures in long-term EEG records","volume":"57","author":"Correa","year":"2015","journal-title":"Comput. Biol. Med."},{"issue":"5","key":"10.1016\/j.patrec.2016.12.018_bib0003","doi-asserted-by":"crossref","first-page":"961","DOI":"10.1109\/18.57199","article-title":"The wavelet transform, time-frequency localization and signal analysis","volume":"36","author":"Daubechies","year":"1990","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.patrec.2016.12.018_bib0004","series-title":"Pattern Classification","author":"Duda","year":"2001"},{"key":"10.1016\/j.patrec.2016.12.018_bib0005","series-title":"Signal Processing and Communications Applications, 2006 IEEE 14th","first-page":"1","article-title":"Classification of EEG for epilepsy diagnosis in wavelet domain using artifical neural network and multi linear regression","author":"Ercelebi","year":"2006"},{"issue":"8","key":"10.1016\/j.patrec.2016.12.018_bib0006","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1016\/j.patrec.2005.10.010","article-title":"An introduction to ROC analysis","volume":"27","author":"Fawcett","year":"2006","journal-title":"Pattern Recognit. Lett."},{"issue":"2","key":"10.1016\/j.patrec.2016.12.018_bib0007","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1111\/j.1469-1809.1936.tb02137.x","article-title":"The use of multiple measurements in taxonomic problems","volume":"7","author":"Fisher","year":"1936","journal-title":"Ann. Eugen."},{"issue":"2","key":"10.1016\/j.patrec.2016.12.018_bib0008","first-page":"1","article-title":"Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition","volume":"26","author":"Gajic","year":"2014","journal-title":"Biomed. Eng."},{"issue":"17","key":"10.1016\/j.patrec.2016.12.018_bib0009","doi-asserted-by":"crossref","first-page":"3051","DOI":"10.1016\/j.neucom.2011.04.029","article-title":"A comparative study of wavelet families for EEG signal classification","volume":"74","author":"Gandhi","year":"2011","journal-title":"Neurocomputing"},{"issue":"10","key":"10.1016\/j.patrec.2016.12.018_bib0010","doi-asserted-by":"crossref","first-page":"1205","DOI":"10.1109\/10.720198","article-title":"Forecasting generalized epileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering","volume":"45","author":"Geva","year":"1998","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.patrec.2016.12.018_bib0011","series-title":"Proceedings of the 1994 IEEE Southeastcon \u201994. Creative Technology Transfer - A Global Affair.","first-page":"1","article-title":"The use of wavelet transform as a preprocessor for the neural network detection of EEG spikes","author":"Kalayci","year":"1994"},{"issue":"8","key":"10.1016\/j.patrec.2016.12.018_bib0012","doi-asserted-by":"crossref","first-page":"1323","DOI":"10.1007\/s11760-012-0362-9","article-title":"Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network","volume":"8","author":"Kumar","year":"2014","journal-title":"Signal, Video Image Process."},{"issue":"1","key":"10.1016\/j.patrec.2016.12.018_bib0013","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.patrec.2014.01.008","article-title":"A review of unsupervised feature learning and deep learning for time-series modeling","volume":"42","author":"L\u00e4ngkvist","year":"2014","journal-title":"Pattern Recognit. Lett."},{"issue":"7","key":"10.1016\/j.patrec.2016.12.018_bib0014","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1109\/34.192463","article-title":"A theory for multiresolution signal decomposition: the wavelet representation","volume":"11","author":"Mallat","year":"1989","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patrec.2016.12.018_bib0015","series-title":"A Wavelet Tour of Signal Processing","author":"Mallat","year":"2009"},{"issue":"3","key":"10.1016\/j.patrec.2016.12.018_bib0016","doi-asserted-by":"crossref","first-page":"207","DOI":"10.4236\/jbise.2011.43029","article-title":"Statistical analysis of epileptic activities based on histogram and wavelet-spectral entropy","volume":"4","author":"Mirzaei","year":"2011","journal-title":"Biomedical Science and Engineering"},{"key":"10.1016\/j.patrec.2016.12.018_bib0017","series-title":"A Glossary of Terms Most Commonly Used by Clinical Electroencephalographers and Proposal for the Report form the EEG Findings","volume":"52","author":"Noachtar","year":"1999"},{"key":"10.1016\/j.patrec.2016.12.018_bib0018","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.neucom.2014.01.020","article-title":"EEG signal classification for epilepsy diagnosis via optimum path forest a systematic assessment","volume":"136","author":"Nunes","year":"2014","journal-title":"Neurocom"},{"issue":"2","key":"10.1016\/j.patrec.2016.12.018_bib0019","doi-asserted-by":"crossref","first-page":"2027","DOI":"10.1016\/j.eswa.2007.12.065","article-title":"Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy","volume":"36","author":"Ocak","year":"2009","journal-title":"Expert. Syst. Appl."},{"issue":"6","key":"10.1016\/j.patrec.2016.12.018_bib0020","doi-asserted-by":"crossref","first-page":"2297","DOI":"10.1073\/pnas.88.6.2297","article-title":"Approximate entropy as a measure of system complexity","volume":"88","author":"Pincus","year":"1990","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"10.1016\/j.patrec.2016.12.018_bib0021","series-title":"International Conference on Fuzzy Systems","first-page":"596","article-title":"Epileptic seizure detection using neural fuzzy networks","author":"Sadati","year":"2006"},{"key":"10.1016\/j.patrec.2016.12.018_bib0022","series-title":"Proceedings of 6th International Image and Signal Processing and Analysis","first-page":"7","article-title":"Extraction of feature information in EEG signal by virtual EEG instrument with the functions of time-frequency analysis","volume":"25","author":"Shuren","year":"2009"},{"key":"10.1016\/j.patrec.2016.12.018_bib0023","series-title":"5th International Conference on Bioinformatics and Biomedical Engineering","first-page":"1","article-title":"Epileptic EEG detection via a novel pattern recognition framework","author":"Song","year":"2011"},{"issue":"37","key":"10.1016\/j.patrec.2016.12.018_bib0024","doi-asserted-by":"crossref","first-page":"8659","DOI":"10.1016\/j.eswa.2010.06.065","article-title":"EEG signal classification using PCA, ICA, LDA and support vector machines","author":"Subasi","year":"2010","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.patrec.2016.12.018_bib0025","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1016\/j.dsp.2008.07.004","article-title":"Combined neural network model employing wavelet coefficients for EEG signals classification","volume":"19","author":"Ubeyli","year":"2009","journal-title":"Digit. Signal Process."},{"issue":"12","key":"10.1016\/j.patrec.2016.12.018_bib0026","doi-asserted-by":"crossref","first-page":"1182","DOI":"10.4236\/jbise.2010.312154","article-title":"A wavelet-approximate entropy method for epileptic activity detection from EEG and its sub-bands","volume":"3","author":"Vavadi","year":"2010","journal-title":"Biomed. Sci. Eng."},{"key":"10.1016\/j.patrec.2016.12.018_bib0027","series-title":"2nd International Conference on Biomedical Engineering and Informatics","first-page":"1","article-title":"Classifying detection of epileptic EEG based on approximate entropy in wavelet domain","author":"Wang","year":"2009"},{"key":"10.1016\/j.patrec.2016.12.018_bib0028","series-title":"3rd International Conference on Bioinformatics and Biomedical Engineering ICBBE.","first-page":"1","article-title":"EEG de-noising based on wavelet transformation","author":"Yu","year":"2009"},{"issue":"7","key":"10.1016\/j.patrec.2016.12.018_bib0029","doi-asserted-by":"crossref","first-page":"1631","DOI":"10.1109\/TBME.2010.2046417","article-title":"Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform","volume":"57","author":"Zandi","year":"2010","journal-title":"IEEE Trans. Biomed. Eng."}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865516303737?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865516303737?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,5]],"date-time":"2018-09-05T12:50:48Z","timestamp":1536151848000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865516303737"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,1]]},"references-count":29,"alternative-id":["S0167865516303737"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2016.12.018","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2017,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A versatile EEG spike detector with multivariate matrix of features based on the linear discriminant analysis, combined wavelets, and descriptors","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2016.12.018","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}