{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T11:56:45Z","timestamp":1723031805440},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,12,1]],"date-time":"2016-12-01T00:00:00Z","timestamp":1480550400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2017,10,28]],"date-time":"2017-10-28T00:00:00Z","timestamp":1509148800000},"content-version":"am","delay-in-days":331,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2016,12,1]],"date-time":"2016-12-01T00:00:00Z","timestamp":1480550400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2016,12,1]],"date-time":"2016-12-01T00:00:00Z","timestamp":1480550400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2016,12,1]],"date-time":"2016-12-01T00:00:00Z","timestamp":1480550400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2016,12,1]],"date-time":"2016-12-01T00:00:00Z","timestamp":1480550400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2016,12,1]],"date-time":"2016-12-01T00:00:00Z","timestamp":1480550400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"publisher","award":["61503150","61472158","61572228"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2016,12]]},"DOI":"10.1016\/j.patrec.2016.10.009","type":"journal-article","created":{"date-parts":[[2016,10,18]],"date-time":"2016-10-18T20:51:50Z","timestamp":1476823910000},"page":"232-238","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Self-adaptive SVDD integrated with AP clustering for one-class classification"],"prefix":"10.1016","volume":"84","author":[{"given":"Tong","family":"Wu","sequence":"first","affiliation":[]},{"given":"Yanchun","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Ramiro","family":"Varela","sequence":"additional","affiliation":[]},{"given":"Chunguo","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Guozhong","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Xiaosong","family":"Han","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2016.10.009_bib0001","series-title":"21st International Conference on Neural Information Processing (ICONIP)","first-page":"325","article-title":"Unknown attack detection by multistage one-class SVM focusing on communication interval","author":"Araki","year":"2014"},{"issue":"5","key":"10.1016\/j.patrec.2016.10.009_bib0002","first-page":"1764","article-title":"Multi-class classification method based on K-means cluster and hyper-sphere","volume":"28","author":"Bao","year":"2011","journal-title":"Appl. Res. Comput."},{"key":"10.1016\/j.patrec.2016.10.009_bib0003","series-title":"IEEE Proceedings Vision, Image and Signal Processing","first-page":"217","article-title":"Novelty detection and neural network validation","author":"Bishop","year":"1994"},{"key":"10.1016\/j.patrec.2016.10.009_bib0004","series-title":"Neural Networks for Pattern Recognition","author":"Bishop","year":"1995"},{"key":"10.1016\/j.patrec.2016.10.009_bib0005","author":"Chang"},{"issue":"7","key":"10.1016\/j.patrec.2016.10.009_bib0006","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/gb-2002-3-7-research0036","article-title":"A prediction-based resampling method for estimating the number of clusters in a dataset","volume":"3","author":"Dudoit","year":"2002","journal-title":"Genome Biol."},{"issue":"5814","key":"10.1016\/j.patrec.2016.10.009_bib0007","doi-asserted-by":"crossref","first-page":"972","DOI":"10.1126\/science.1136800","article-title":"Clustering by passing messages between data points","volume":"315","author":"Frey","year":"2007","journal-title":"Science"},{"issue":"13","key":"10.1016\/j.patrec.2016.10.009_bib0008","doi-asserted-by":"crossref","first-page":"1919","DOI":"10.1016\/j.patrec.2010.06.019","article-title":"On the regularization path of the support vector domain description","volume":"31","author":"Hansen","year":"2010","journal-title":"Pattern Recognit. Lett."},{"issue":"17","key":"10.1016\/j.patrec.2016.10.009_bib0009","first-page":"184","article-title":"Updated learning algorithm of support vector data description based on K-means clustering","volume":"35","author":"Hua","year":"2009","journal-title":"Comput. Eng."},{"issue":"8","key":"10.1016\/j.patrec.2016.10.009_bib0010","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1016\/j.patrec.2009.09.011","article-title":"Data clustering: 50 years beyond K-means","volume":"31","author":"Jain","year":"2010","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2016.10.009_bib0011","series-title":"Learning to Recognize: A Study on One-Class Classification and Active Learning","author":"Juszczak","year":"2006"},{"issue":"9","key":"10.1016\/j.patrec.2016.10.009_bib0012","first-page":"1049","article-title":"Support vector data description for fast anomaly detection in hyperspectral imagery based on sample segmentation","volume":"29","author":"Kan","year":"2008","journal-title":"Acta Armamentaria"},{"issue":"9","key":"10.1016\/j.patrec.2016.10.009_bib0013","doi-asserted-by":"crossref","first-page":"1027","DOI":"10.1016\/j.patrec.2012.01.019","article-title":"On feature selection with principal component analysis for one-class SVM","volume":"33","author":"Lian","year":"2012","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2016.10.009_bib0014","series-title":"10th International Conference on Natural Computation","first-page":"268","article-title":"Global prediction-based adaptive mutation particle swarm optimization","author":"Li","year":"2014"},{"issue":"11","key":"10.1016\/j.patrec.2016.10.009_bib0015","doi-asserted-by":"crossref","first-page":"1517","DOI":"10.1016\/j.patrec.2011.04.013","article-title":"Selecting training points for one-class support vector machines [J]","volume":"32","author":"Li","year":"2011","journal-title":"Pattern Recognit. Lett."},{"issue":"2001","key":"10.1016\/j.patrec.2016.10.009_bib0016","first-page":"139","article-title":"One-class SVMs for document classification","volume":"2","author":"Manevitz","year":"2001","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patrec.2016.10.009_bib0017","first-page":"239","article-title":"A comparison of three methods for selecting values of input variables in the analysis of output from a computer code","volume":"21","author":"McKay","year":"1979"},{"issue":"11","key":"10.1016\/j.patrec.2016.10.009_bib0018","first-page":"2496","article-title":"Overview of one-class classifiers","volume":"37","author":"Pan","year":"2009","journal-title":"Chin. J. Electron."},{"issue":"6191","key":"10.1016\/j.patrec.2016.10.009_bib0019","doi-asserted-by":"crossref","first-page":"1492","DOI":"10.1126\/science.1242072","article-title":"Clustering by fast search and find of density peaks","volume":"344","author":"Rodriguez","year":"2014","journal-title":"Science"},{"key":"10.1016\/j.patrec.2016.10.009_bib0020","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/0377-0427(87)90125-7","article-title":"Silhouettes: a graphical aid to the interpretation and validation of cluster analysis","volume":"20","author":"Rousseeuw","year":"1987","journal-title":"Comput. Appl. Math."},{"issue":"7","key":"10.1016\/j.patrec.2016.10.009_bib0021","doi-asserted-by":"crossref","first-page":"1443","DOI":"10.1162\/089976601750264965","article-title":"Estimating the support of a high-dimensional distribution","volume":"13","author":"Sch\u00f6lkopf","year":"2001","journal-title":"Neural Comput."},{"issue":"5","key":"10.1016\/j.patrec.2016.10.009_bib0022","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1080\/08839514.2013.785791","article-title":"One-class support vector machines approach to anomaly detection","volume":"27","author":"Singh","year":"2013","journal-title":"Appl. Artif. Intel."},{"issue":"11-13","key":"10.1016\/j.patrec.2016.10.009_bib0023","doi-asserted-by":"crossref","first-page":"1191","DOI":"10.1016\/S0167-8655(99)00087-2","article-title":"Support vector domain description","volume":"20","author":"Tax","year":"1999","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patrec.2016.10.009_bib0024","series-title":"One-Class Classification: Concept-Learning in the Absence of Counter-Examples","author":"Tax","year":"2001"},{"issue":"1","key":"10.1016\/j.patrec.2016.10.009_bib0025","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1023\/B:MACH.0000008084.60811.49","article-title":"Support vector data description","volume":"54","author":"Tax","year":"2004","journal-title":"Mach. Learn. Res."},{"key":"10.1016\/j.patrec.2016.10.009_bib0026","doi-asserted-by":"crossref","unstructured":"Thomas, A., Feuillard, V., Gramfort, A., 2015. Calibration of one-class SVM for MV set estimation. arXiv preprint arXiv:1508.07535.","DOI":"10.1109\/DSAA.2015.7344789"},{"issue":"3","key":"10.1016\/j.patrec.2016.10.009_bib0027","doi-asserted-by":"crossref","first-page":"875","DOI":"10.1016\/j.patcog.2012.09.018","article-title":"Position regularized support vector domain description","volume":"46","author":"Wang","year":"2013","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patrec.2016.10.009_bib0028","first-page":"376","article-title":"Centering SVDD for unsupervised feature representation in object classification","volume":"2013","author":"Wang","year":"2013"},{"issue":"5","key":"10.1016\/j.patrec.2016.10.009_bib0029","first-page":"187","article-title":"Review of one-class classification method on support vector","volume":"37","author":"Wu","year":"2011","journal-title":"Comput. Eng."},{"key":"10.1016\/j.patrec.2016.10.009_bib0030","first-page":"124","article-title":"Internet traffic identification by using improved one class support vector machines","volume":"43","author":"Wu","year":"2013","journal-title":"J. Jilin Univ. Eng. Technol. Edition"},{"key":"10.1016\/j.patrec.2016.10.009_bib0031","unstructured":"Wu, M., 2013. Study on on-line monitoring system and method of fault diagnosis based on improved SVDD. Beijing University of Posts and Telecommunications."},{"key":"10.1016\/j.patrec.2016.10.009_bib0032","series-title":"An Improved Support Vector Data Description Algorithm","author":"Xiao","year":"2013"},{"issue":"2","key":"10.1016\/j.patrec.2016.10.009_bib0033","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.knosys.2014.01.020","article-title":"Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection","volume":"59","author":"Xiao","year":"2014","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.patrec.2016.10.009_bib0034","series-title":"Electronics, Communications and Control (ICECC), 2011 International Conference on. IEEE","first-page":"2050","article-title":"Fault detection based on SVDD and cluster algorithm","volume":"2011","author":"Xu","year":"2011"},{"issue":"3","key":"10.1016\/j.patrec.2016.10.009_bib0035","first-page":"441","article-title":"Model of IDS based on SVDD and cluster algorithm","volume":"25","author":"Xu","year":"2010","journal-title":"Control Decis."},{"key":"10.1016\/j.patrec.2016.10.009_bib0036","series-title":"4th International Conference on Applied Energy","first-page":"1041","article-title":"Pattern recognition-based chillers fault detection method using support vector data description (SVDD)","volume":"112","author":"Zhao","year":"2013"}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865516302756?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865516302756?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,6]],"date-time":"2024-04-06T01:34:18Z","timestamp":1712367258000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865516302756"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,12]]},"references-count":36,"alternative-id":["S0167865516302756"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2016.10.009","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2016,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Self-adaptive SVDD integrated with AP clustering for one-class classification","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2016.10.009","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}