{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T23:52:20Z","timestamp":1722901940379},"reference-count":40,"publisher":"Elsevier BV","content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2014,8]]},"DOI":"10.1016\/j.patrec.2014.02.020","type":"journal-article","created":{"date-parts":[[2014,3,17]],"date-time":"2014-03-17T05:32:49Z","timestamp":1395034369000},"page":"17-25","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Label propagation through minimax paths for scalable semi-supervised learning"],"prefix":"10.1016","volume":"45","author":[{"given":"Kye-Hyeon","family":"Kim","sequence":"first","affiliation":[]},{"given":"Seungjin","family":"Choi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2014.02.020_b0005","unstructured":"X. Zhu, Semi-supervised learning literature survey, Tech. Rep. TR-1530, University of Wisconsin-Madison, 2008."},{"key":"10.1016\/j.patrec.2014.02.020_b0010","unstructured":"A. Blum, S. Chawla, Learning from labeled and unlabeled data using graph mincuts, in: Proceedings of the International Conference on Machine Learning (ICML), 2001."},{"key":"10.1016\/j.patrec.2014.02.020_b0015","unstructured":"X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: Proceedings of the International Conference on Machine Learning (ICML), 2003."},{"key":"10.1016\/j.patrec.2014.02.020_b0020","unstructured":"D. Zhou, O. Bousquet, T.N. Lal, J. Weston, B. Sch\u00f6lkopf, Learning with local and global consistency, in: Advances in Neural Information Processing Systems (NIPS), 2004."},{"key":"10.1016\/j.patrec.2014.02.020_b0025","first-page":"2399","article-title":"Manifold regularization: a geometric framework for learning examples","volume":"7","author":"Belkin","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patrec.2014.02.020_b0030","doi-asserted-by":"crossref","unstructured":"J.B. Orlin, Max flows in O(nm) time, or better, in: Proceedings of the Annual ACM Symposium on Theory of Computing (STOC), 2013.","DOI":"10.1145\/2488608.2488705"},{"issue":"3","key":"10.1016\/j.patrec.2014.02.020_b0035","doi-asserted-by":"crossref","first-page":"856","DOI":"10.1137\/0907058","article-title":"GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems","volume":"7","author":"Saad","year":"1986","journal-title":"SIAM J. Sci. Stat. Comput."},{"key":"10.1016\/j.patrec.2014.02.020_b0040","unstructured":"O. Chapelle, J. Weston, B. Sch\u00f6lkopf, Cluster kernels for semi-supervised learning, in: Advances in Neural Information Processing Systems (NIPS), 2003."},{"issue":"2","key":"10.1016\/j.patrec.2014.02.020_b0045","doi-asserted-by":"crossref","first-page":"14:1","DOI":"10.1145\/1899412.1899418","article-title":"Image annotation by kNN-sparse graph-based label propagation over noisily-tagged web images","volume":"2","author":"Tang","year":"2011","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"10.1016\/j.patrec.2014.02.020_b0050","doi-asserted-by":"crossref","unstructured":"X. Zhu, J. Lafferty, Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning, in: Proceedings of the International Conference on Machine Learning (ICML), 2005.","DOI":"10.1145\/1102351.1102484"},{"key":"10.1016\/j.patrec.2014.02.020_b0055","unstructured":"K. Yu, S. Yu, V. Tresp, Blockwise supervised inference on large graphs, in: Proceedings of ICML, Workshop on Learning with Partially Classified Training Data, 2005."},{"key":"10.1016\/j.patrec.2014.02.020_b0060","doi-asserted-by":"crossref","unstructured":"K. Zhang, J.T. Kwok, B. Parvin, Prototype vector machine for large scale semi-supervised learning, in: Proceedings of the International Conference on Machine Learning (ICML), 2009.","DOI":"10.1145\/1553374.1553531"},{"key":"10.1016\/j.patrec.2014.02.020_b0065","unstructured":"W. Liu, J. He, S.F. Chang, Large graph construction for scalable semi-supervised learning, in: Proceedings of the International Conference on Machine Learning (ICML), 2010."},{"key":"10.1016\/j.patrec.2014.02.020_b0070","doi-asserted-by":"crossref","unstructured":"A. Talwalkar, S. Kumar, H. Rowley, Large-scale manifold learning, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2008.","DOI":"10.1109\/CVPR.2008.4587670"},{"key":"10.1016\/j.patrec.2014.02.020_b0075","unstructured":"S. Kumar, M. Mohri, A. Talwalkar, Sampling techniques for the Nystr\u00f6m method, in: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), 2009."},{"key":"10.1016\/j.patrec.2014.02.020_b0080","unstructured":"J. Garcke, M. Griebel, Semi-supervised learning with sparse grids, in: Proceedings of ICML, Workshop on Learning with Partially Classified Training Data, 2005."},{"key":"10.1016\/j.patrec.2014.02.020_b0085","doi-asserted-by":"crossref","unstructured":"I.W. Tsang, J.T. Kwok, Large-scale sparsified manifold regularization, in: Advances in Neural Information Processing Systems (NIPS), 2006.","DOI":"10.7551\/mitpress\/7503.003.0180"},{"key":"10.1016\/j.patrec.2014.02.020_b0090","unstructured":"R. Fergus, Y. Weiss, A. Torralba, Semi-supervised learning in gigantic image collections, in: Advances in Neural Information Processing Systems (NIPS), 2009."},{"key":"10.1016\/j.patrec.2014.02.020_b0095","doi-asserted-by":"crossref","unstructured":"L. Yen, A. Mantrach, M. Shimbo, A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances, in: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2008.","DOI":"10.1145\/1401890.1401984"},{"issue":"3","key":"10.1016\/j.patrec.2014.02.020_b0100","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1109\/TKDE.2007.46","article-title":"Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation","volume":"19","author":"Fouss","year":"2007","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patrec.2014.02.020_b0105","doi-asserted-by":"crossref","unstructured":"A.J. Smola, R. Kondor, Kernels and regularization on graphs, in: Proceedings of the Annual Conference on Learning Theory (COLT), 2003.","DOI":"10.1007\/978-3-540-45167-9_12"},{"key":"10.1016\/j.patrec.2014.02.020_b0110","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.neunet.2012.03.001","article-title":"An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification","volume":"31","author":"Fouss","year":"2012","journal-title":"Neural Netw."},{"issue":"5","key":"10.1016\/j.patrec.2014.02.020_b0115","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1287\/opre.8.5.733","article-title":"The maximum capacity through a network","volume":"8","author":"Pollack","year":"1960","journal-title":"Oper. Res."},{"issue":"16","key":"10.1016\/j.patrec.2014.02.020_b0120","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevLett.91.168701","article-title":"Optimal paths in disordered complex networks","volume":"91","author":"Braunstein","year":"2003","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.patrec.2014.02.020_b0125","doi-asserted-by":"crossref","unstructured":"T. Kalisky, S. Sreenivasan, L.A. Braunstein, S.V. Buldyrev, S. Havlin, H.E. Stanley, Scale-free properties of weighted random graphs: minimum spanning trees and percolation, in: AIP Conference Proceedings, 2005.","DOI":"10.1063\/1.1985379"},{"key":"10.1016\/j.patrec.2014.02.020_b0130","doi-asserted-by":"crossref","unstructured":"K.H. Kim, S. Choi, Neighbor search with global geometry: a minimax message passing algorithm, in: Proceedings of the International Conference on Machine Learning (ICML), 2007.","DOI":"10.1145\/1273496.1273547"},{"key":"10.1016\/j.patrec.2014.02.020_b0135","doi-asserted-by":"crossref","unstructured":"D. Yarowsky, Unsupervised word sense disambiguation rivaling supervised methods, in: Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), 1995.","DOI":"10.3115\/981658.981684"},{"key":"10.1016\/j.patrec.2014.02.020_b0140","series-title":"Semi-Supervised Learning","author":"Chapelle","year":"2006"},{"key":"10.1016\/j.patrec.2014.02.020_b0145","unstructured":"G. Haffari, A. Sarkar, Analysis of semi-supervised learning with the Yarowsky algorithm, in: Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence (UAI), 2007."},{"key":"10.1016\/j.patrec.2014.02.020_b0150","unstructured":"M. Muja, D.G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, in: Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP), 2009."},{"key":"10.1016\/j.patrec.2014.02.020_b0155","doi-asserted-by":"crossref","unstructured":"D.G. Lowe, Object recognition from local scale-invariant features, in: Proceedings of the International Conference on Computer Vision (ICCV), 1999.","DOI":"10.1109\/ICCV.1999.790410"},{"key":"10.1016\/j.patrec.2014.02.020_b0160","doi-asserted-by":"crossref","unstructured":"J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2007.","DOI":"10.1109\/CVPR.2007.383172"},{"key":"10.1016\/j.patrec.2014.02.020_b0165","doi-asserted-by":"crossref","unstructured":"S. Winder, M. Brown, Learning local image descriptors, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2007.","DOI":"10.1109\/CVPR.2007.382971"},{"key":"10.1016\/j.patrec.2014.02.020_b0170","doi-asserted-by":"crossref","unstructured":"K. Kavukcuoglu, M. Ranzato, R. Fergus, Y. LeCun, Learning invariant features through topographic filter maps, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2009.","DOI":"10.1109\/CVPR.2009.5206545"},{"key":"10.1016\/j.patrec.2014.02.020_b0175","doi-asserted-by":"crossref","unstructured":"L. Bo, K. Lai, X. Ren, Object recognition with hierarchical kernel descriptors, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2011.","DOI":"10.1109\/CVPR.2011.5995719"},{"key":"10.1016\/j.patrec.2014.02.020_b0180","unstructured":"F.G. Cozman, I. Cohen, Unlabeled data can degrade classification performance of generative classifiers, Tech. Rep. HPL-2001-234, HP Laboratories, Palo Alto, 2001."},{"key":"10.1016\/j.patrec.2014.02.020_b0185","unstructured":"J. Lafferty, L. Wasserman, Statistical analysis of semi-supervised regression, in: Advances in Neural Information Processing Systems (NIPS), 2007."},{"key":"10.1016\/j.patrec.2014.02.020_b0190","unstructured":"S. Ben-David, T. Lu, D. P\u00e1l, Does unlabeled data probably help? Worst-case analysis of the sample complexity of semi-supervised learning, in: Proceedings of the Annual Conference on Learning Theory (COLT), 2008."},{"key":"10.1016\/j.patrec.2014.02.020_b0195","unstructured":"A. Singh, R.D. Nowak, X. Zhu, Unlabeled data: now it helps, now it doesnt, in: Advances in Neural Information Processing Systems (NIPS), 2008."},{"key":"10.1016\/j.patrec.2014.02.020_b0200","doi-asserted-by":"crossref","unstructured":"M. Loog, Constrained parameter estimation for semi-supervised learning: the case of the nearest mean classifier, in: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2010.","DOI":"10.1007\/978-3-642-15883-4_19"}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865514000701?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865514000701?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,7,11]],"date-time":"2023-07-11T06:37:09Z","timestamp":1689057429000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865514000701"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,8]]},"references-count":40,"alternative-id":["S0167865514000701"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2014.02.020","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2014,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Label propagation through minimax paths for scalable semi-supervised learning","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition Letters","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patrec.2014.02.020","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}