{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,4]],"date-time":"2024-08-04T20:36:33Z","timestamp":1722803793446},"reference-count":32,"publisher":"Elsevier BV","issue":"2","license":[{"start":{"date-parts":[[2013,1,1]],"date-time":"2013-01-01T00:00:00Z","timestamp":1356998400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Pattern Recognition Letters"],"published-print":{"date-parts":[[2013,1]]},"DOI":"10.1016\/j.patrec.2012.09.008","type":"journal-article","created":{"date-parts":[[2012,9,26]],"date-time":"2012-09-26T20:35:35Z","timestamp":1348691735000},"page":"131-139","source":"Crossref","is-referenced-by-count":10,"title":["Random direction divisive clustering"],"prefix":"10.1016","volume":"34","author":[{"given":"S.K.","family":"Tasoulis","sequence":"first","affiliation":[]},{"given":"D.K.","family":"Tasoulis","sequence":"additional","affiliation":[]},{"given":"V.P.","family":"Plagianakos","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patrec.2012.09.008_b0005","doi-asserted-by":"crossref","unstructured":"Achlioptas, D., 2001. Database-friendly random projections. In: Proc. 20th ACM Symposium on Principles of Database Systems. ACM Press. pp. 274\u2013281.","DOI":"10.1145\/375551.375608"},{"key":"10.1016\/j.patrec.2012.09.008_b0010","series-title":"Grouping Multidimensional Data: Recent Advances in Clustering","first-page":"25","article-title":"A survey of clustering data mining techniques","author":"Berkhin","year":"2006"},{"key":"10.1016\/j.patrec.2012.09.008_b0015","doi-asserted-by":"crossref","unstructured":"Bingham, E., Mannila, H., 2001. Random projection in dimensionality reduction: Applications to image and text data. In: Proc. 7th ACM SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining. ACM Press. pp. 245\u2013250.","DOI":"10.1145\/502512.502546"},{"key":"10.1016\/j.patrec.2012.09.008_b0020","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1023\/A:1009740529316","article-title":"Principal direction divisive partitioning","volume":"2","author":"Boley","year":"1998","journal-title":"Data Min. Knowledge Discovery"},{"key":"10.1016\/j.patrec.2012.09.008_b0025","unstructured":"Boutsidis, C., Zouzias, A., Drineas, P., 2010. Random projections for k-means clustering. CoRR abs\/1011.4632."},{"key":"10.1016\/j.patrec.2012.09.008_b0030","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1109\/TIT.2005.862083","article-title":"Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information","volume":"52","author":"Candes","year":"2006","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.patrec.2012.09.008_b0035","unstructured":"Dasgupta, S., 1999. Learning mixtures of gaussians. Foundations of Computer Science, Annual IEEE Symposium on 0, 634."},{"key":"10.1016\/j.patrec.2012.09.008_b0040","unstructured":"Dasgupta, S., 2000. Experiments with random projection. In: Proc. 16th Conf. on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. pp. 143\u2013151."},{"key":"10.1016\/j.patrec.2012.09.008_b0045","unstructured":"Dasgupta, S., Gupta, A., 1999. An elementary proof of the Johnson\u2013Lindenstrauss lemma. Technical report."},{"key":"10.1016\/j.patrec.2012.09.008_b0050","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1109\/TIT.2006.871582","article-title":"Compressed sensing","volume":"52","author":"Donoho","year":"2006","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.patrec.2012.09.008_b0055","doi-asserted-by":"crossref","first-page":"643","DOI":"10.1109\/34.927464","article-title":"From few to many: Illumination cone models for face recognition under variable lighting and pose","volume":"23","author":"Georghiades","year":"2001","journal-title":"IEEE Trans. Pattern Anal. Machine Intell."},{"key":"10.1016\/j.patrec.2012.09.008_b0060","doi-asserted-by":"crossref","unstructured":"Goel, N., Bebis, G., Nefian, A., 2005. Face recognition experiments with random projection. In: Proceedings of the SPIE, pp. 426\u2013437.","DOI":"10.1117\/12.605553"},{"key":"10.1016\/j.patrec.2012.09.008_b0065","unstructured":"Hecht-Nielsen, R., 1994. Context vectors: General purpose approximate meaning representations self-organized from raw data. In: Computational Intelligence: Imitating Life. IEEE Press. pp. 43\u201356."},{"key":"10.1016\/j.patrec.2012.09.008_b0070","doi-asserted-by":"crossref","unstructured":"Johnson, W., Lindenstrauss, J., 1984. Extensions of Lipschitz mappings into a Hilbert space. In: Conference in Modern Analysis and Probability (New Haven, Conn., 1982). American Mathematical Society, vol. 26 of, Contemporary Mathematics, pp. 189\u2013206.","DOI":"10.1090\/conm\/026\/737400"},{"key":"10.1016\/j.patrec.2012.09.008_b0075","unstructured":"Kaski, S., 1997. Data exploration using self-organizing maps. In Acta Polytechnica Scandinavica, Mathematics, Computing and Management in Engineering Series, vol. 82. Dr.Tech. thesis, Helsinki University of Technology, Finland."},{"key":"10.1016\/j.patrec.2012.09.008_b0080","doi-asserted-by":"crossref","unstructured":"Kleinberg, J.M., 1997. Two algorithms for nearest-neighbor search in high dimensions. In: Proc. 29th Annual ACM Symposium on Theory of Computing. ACM, New York, NY, USA. pp. 599\u2013608.","DOI":"10.1145\/258533.258653"},{"key":"10.1016\/j.patrec.2012.09.008_b0085","unstructured":"Kogan, J., 2007. Introduction to clustering large and high-dimensional data. Cambridge University Press, New York."},{"key":"10.1016\/j.patrec.2012.09.008_b0090","doi-asserted-by":"crossref","unstructured":"Kushilevitz, E., Ostrovsky, R., Rabani, Y., 1998. Efficient search for approximate nearest neighbor in high dimensional spaces. In: Proc. 30th Annual ACM Symposium on Theory of Computing. ACM, New York, NY, USA. pp. 614\u2013623.","DOI":"10.1145\/276698.276877"},{"key":"10.1016\/j.patrec.2012.09.008_b0095","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1109\/TFUZZ.2010.2089631","article-title":"Lda-based clustering algorithm and its application to an unsupervised feature extraction","volume":"19","author":"Li","year":"2011","journal-title":"Trans. Fuzzy Systems"},{"key":"10.1016\/j.patrec.2012.09.008_b0100","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1006\/jmbi.1997.0948","article-title":"Global self-organization of all known protein sequences reveals inherent biological signatures","volume":"268","author":"Linial","year":"1997","journal-title":"J. Mol. Biol."},{"key":"10.1016\/j.patrec.2012.09.008_b0105","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1023\/A:1020443310743","article-title":"Hierarchical clustering using non-greedy principal direction divisive partitioning","volume":"5","author":"Nilsson","year":"2002","journal-title":"Inf. Retrieval"},{"key":"10.1016\/j.patrec.2012.09.008_b0110","doi-asserted-by":"crossref","unstructured":"Papadimitriou, C.H., Raghavan, P., Tamaki, H., Vempala, S., 1998. Latent semantic indexing: A probabilistic analysis. In: Proc. 17th ACM Symp. on the Principles of Database Systems, pp. 159\u2013168.","DOI":"10.1145\/275487.275505"},{"key":"10.1016\/j.patrec.2012.09.008_b0115","unstructured":"Rosenberg, A., Hirschberg, J., 2007. V-measure: A conditional entropy-based external cluster evaluation measure. In: 2007 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP\u2013CoNLL). pp. 410\u2013420."},{"key":"10.1016\/j.patrec.2012.09.008_b0120","doi-asserted-by":"crossref","unstructured":"Samaria, F., Harter, A., 1994. Parameterisation of a stochastic model for human face identification. In: Second IEEE Workshop on Applications of Computer Vision, Sarasota, FL.","DOI":"10.1109\/ACV.1994.341300"},{"key":"10.1016\/j.patrec.2012.09.008_b0125","doi-asserted-by":"crossref","unstructured":"Sanjeev, A., Kannan, R., 2001. Learning mixtures of arbitrary gaussians. In: Proc. 33rd Annual ACM Symposium on Theory of Computing. ACM, New York, NY, USA. pp. 247\u2013257.","DOI":"10.1145\/380752.380808"},{"key":"10.1016\/j.patrec.2012.09.008_b0130","doi-asserted-by":"crossref","unstructured":"Steinbach, M., Ert\u00f6z, L., Kumar, V., 2003. The challenges of clustering high dimensional data. New Vistas Statist. Phys. Appl. Econophys. Bioinf. Pattern Recognition. Springer-Verlag.","DOI":"10.1007\/978-3-662-08968-2_16"},{"key":"10.1016\/j.patrec.2012.09.008_b0135","doi-asserted-by":"crossref","unstructured":"Tasoulis, S., Plagianakos, V., Tasoulis, D., 2011. Independent component divisive clustering of gene expression data. In: 8th Internat. Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, Gargnano, Italy.","DOI":"10.1007\/978-3-642-14571-1_17"},{"key":"10.1016\/j.patrec.2012.09.008_b0140","doi-asserted-by":"crossref","first-page":"3391","DOI":"10.1016\/j.patcog.2010.05.025","article-title":"Enhancing principal direction divisive clustering","volume":"43","author":"Tasoulis","year":"2010","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.patrec.2012.09.008_b0145","doi-asserted-by":"crossref","unstructured":"Vempala, S.S., 2010. A random-sampling-based algorithm for learning intersections of halfspaces. J. ACM 57, 32:1\u201332:14.","DOI":"10.1145\/1857914.1857916"},{"key":"10.1016\/j.patrec.2012.09.008_b0150","series-title":"Kernel Smoothing","author":"Wand","year":"1995"},{"key":"10.1016\/j.patrec.2012.09.008_b0155","doi-asserted-by":"crossref","unstructured":"Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L., 2003. Improved fast gauss transform and efficient kernel density estimation. In: 8th IEEE Internat. Conf. on Computer Vision, 2003 Proceedings. pp. 664\u2013671.","DOI":"10.1109\/ICCV.2003.1238383"},{"key":"10.1016\/j.patrec.2012.09.008_b0160","doi-asserted-by":"crossref","unstructured":"Zeimpekis, D., Gallopoulos, E., 2007. Principal direction divisive partitioning with kernels and k-means steering. In: Survey of Text Mining II: Clustering, Classification, and Retrieval. pp. 45\u201364.","DOI":"10.1007\/978-1-84800-046-9_3"}],"container-title":["Pattern Recognition Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865512002930?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167865512002930?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,7,4]],"date-time":"2019-07-04T07:07:57Z","timestamp":1562224077000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167865512002930"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013,1]]},"references-count":32,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2013,1]]}},"alternative-id":["S0167865512002930"],"URL":"https:\/\/doi.org\/10.1016\/j.patrec.2012.09.008","relation":{},"ISSN":["0167-8655"],"issn-type":[{"value":"0167-8655","type":"print"}],"subject":[],"published":{"date-parts":[[2013,1]]}}}