{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:07:39Z","timestamp":1733634459723,"version":"3.30.1"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.patcog.2024.111199","type":"journal-article","created":{"date-parts":[[2024,11,21]],"date-time":"2024-11-21T07:56:20Z","timestamp":1732175780000},"page":"111199","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Dynamic VAEs via semantic-aligned matching for continual zero-shot learning"],"prefix":"10.1016","volume":"160","author":[{"given":"Junbo","family":"Yang","sequence":"first","affiliation":[]},{"given":"Borui","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Hanyu","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1443-0776","authenticated-orcid":false,"given":"Xinbo","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Jungong","family":"Han","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9193-5412","authenticated-orcid":false,"given":"Fanglin","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xuangou","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2024.111199_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2024.127449","article-title":"Infrared colorization with cross-modality zero-shot learning","volume":"579","author":"Wei","year":"2024","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2024.111199_b2","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.neunet.2021.03.004","article-title":"Speaker recognition based on deep learning: An overview","volume":"140","author":"Bai","year":"2021","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2024.111199_b3","doi-asserted-by":"crossref","first-page":"637","DOI":"10.1016\/j.neunet.2023.11.006","article-title":"A survey on cancer detection via convolutional neural networks: Current challenges and future directions","volume":"169","author":"Sharma","year":"2024","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2024.111199_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2023.126264","article-title":"Dual-focus transfer network for zero-shot learning","volume":"541","author":"Jia","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2024.111199_b5","unstructured":"H. Larochelle, D. Erhan, Y. Bengio, Zero-data learning of new tasks, in: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, Vol. 1, 2008, p. 3."},{"key":"10.1016\/j.patcog.2024.111199_b6","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1778","article-title":"Describing objects by their attributes","author":"Farhadi","year":"2009"},{"key":"10.1016\/j.patcog.2024.111199_b7","doi-asserted-by":"crossref","unstructured":"P. Morgado, N. Vasconcelos, Semantically consistent regularization for zero-shot recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6060\u20136069.","DOI":"10.1109\/CVPR.2017.220"},{"issue":"1","key":"10.1016\/j.patcog.2024.111199_b8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3934\/aci.2022001","article-title":"A comprehensive survey of zero-shot image classification: methods, implementation, and fair evaluation","volume":"2","author":"Yang","year":"2022","journal-title":"Appl. Comput. Intell."},{"issue":"11","key":"10.1016\/j.patcog.2024.111199_b9","doi-asserted-by":"crossref","first-page":"2332","DOI":"10.1109\/TPAMI.2015.2408354","article-title":"Transductive multi-view zero-shot learning","volume":"37","author":"Fu","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.patcog.2024.111199_b10","doi-asserted-by":"crossref","first-page":"506","DOI":"10.1109\/TIP.2018.2869696","article-title":"Triple verification network for generalized zero-shot learning","volume":"28","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patcog.2024.111199_b11","doi-asserted-by":"crossref","unstructured":"V.K. Verma, G. Arora, A. Mishra, P. Rai, Generalized zero-shot learning via synthesized examples, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4281\u20134289.","DOI":"10.1109\/CVPR.2018.00450"},{"key":"10.1016\/j.patcog.2024.111199_b12","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.neucom.2023.03.007","article-title":"Visual-semantic consistency matching network for generalized zero-shot learning","volume":"536","author":"Zhang","year":"2023","journal-title":"Neurocomputing"},{"year":"2020","series-title":"Class normalization for (continual)? generalized zero-shot learning","author":"Skorokhodov","key":"10.1016\/j.patcog.2024.111199_b13"},{"key":"10.1016\/j.patcog.2024.111199_b14","doi-asserted-by":"crossref","unstructured":"K. Wei, C. Deng, X. Yang, et al., Lifelong Zero-Shot Learning, in: Proceedings of International Joint Conferences on Artificial Intelligence Organization, 2020, pp. 551\u2013557.","DOI":"10.24963\/ijcai.2020\/77"},{"key":"10.1016\/j.patcog.2024.111199_b15","series-title":"Proceedings of Psychology of Learning and Motivation","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/S0079-7421(08)60536-8","article-title":"Catastrophic interference in connectionist networks: The sequential learning problem","volume":"vol. 24","author":"McCloskey","year":"1989"},{"key":"10.1016\/j.patcog.2024.111199_b16","series-title":"Proceedings of 2021 International Joint Conference on Neural Networks","first-page":"1","article-title":"Adversarial training of variational auto-encoders for continual zero-shot learning (a-CZSL)","author":"Ghosh","year":"2021"},{"year":"2021","series-title":"Dynamic vaes with generative replay for continual zero-shot learning","author":"Ghosh","key":"10.1016\/j.patcog.2024.111199_b17"},{"key":"10.1016\/j.patcog.2024.111199_b18","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1016\/j.neunet.2022.08.034","article-title":"Tf-gczsl: Task-free generalized continual zero-shot learning","volume":"155","author":"Gautam","year":"2022","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2024.111199_b19","doi-asserted-by":"crossref","unstructured":"L. Zhang, T. Xiang, S. Gong, Learning a deep embedding model for zero-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2021\u20132030.","DOI":"10.1109\/CVPR.2017.321"},{"key":"10.1016\/j.patcog.2024.111199_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109270","article-title":"Hybrid routing transformer for zero-shot learning","volume":"137","author":"Cheng","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111199_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109869","article-title":"Attribute subspaces for zero-shot learning","volume":"144","author":"Zhou","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111199_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109591","article-title":"Learning cross-domain semantic-visual relationships for transductive zero-shot learning","volume":"141","author":"Lv","year":"2023","journal-title":"Pattern Recognit."},{"year":"2013","series-title":"Auto-encoding variational bayes","author":"Kingma","key":"10.1016\/j.patcog.2024.111199_b23"},{"key":"10.1016\/j.patcog.2024.111199_b24","unstructured":"I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Proceedings of Advances in Neural Information Processing Systems, Vol. 27, 2014, pp. 2672\u20132680."},{"key":"10.1016\/j.patcog.2024.111199_b25","doi-asserted-by":"crossref","unstructured":"E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, Z. Akata, Generalized zero-and few-shot learning via aligned variational autoencoders, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8247\u20138255.","DOI":"10.1109\/CVPR.2019.00844"},{"key":"10.1016\/j.patcog.2024.111199_b26","unstructured":"I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved training of wasserstein gans, in: Proceedings of Advances in Neural Information Processing Systems, Vol. 30, 2017, pp. 5767\u20135777."},{"key":"10.1016\/j.patcog.2024.111199_b27","doi-asserted-by":"crossref","unstructured":"Y. Xian, T. Lorenz, B. Schiele, Z. Akata, Feature generating networks for zero-shot learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5542\u20135551.","DOI":"10.1109\/CVPR.2018.00581"},{"key":"10.1016\/j.patcog.2024.111199_b28","doi-asserted-by":"crossref","unstructured":"Z. Wang, Y. Hao, T. Mu, O. Li, S. Wang, X. He, Bi-directional distribution alignment for transductive zero-shot learning, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 19893\u201319902.","DOI":"10.1109\/CVPR52729.2023.01905"},{"key":"10.1016\/j.patcog.2024.111199_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110561","article-title":"Transductive zero-shot learning with generative model-driven structure alignment","volume":"153","author":"Liu","year":"2024","journal-title":"Pattern Recognit."},{"issue":"13","key":"10.1016\/j.patcog.2024.111199_b30","doi-asserted-by":"crossref","first-page":"3521","DOI":"10.1073\/pnas.1611835114","article-title":"Overcoming catastrophic forgetting in neural networks","volume":"114","author":"Kirkpatrick","year":"2017","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.patcog.2024.111199_b31","series-title":"Psychology of Learning and Motivation","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/S0079-7421(08)60536-8","article-title":"Catastrophic interference in connectionist networks: The sequential learning problem","volume":"vol. 24","author":"McCloskey","year":"1989"},{"key":"10.1016\/j.patcog.2024.111199_b32","series-title":"International Conference on Machine Learning","first-page":"3987","article-title":"Continual learning through synaptic intelligence","author":"Zenke","year":"2017"},{"key":"10.1016\/j.patcog.2024.111199_b33","doi-asserted-by":"crossref","unstructured":"A. Chaudhry, P.K. Dokania, T. Ajanthan, P.H. Torr, Riemannian walk for incremental learning: Understanding forgetting and intransigence, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 532\u2013547.","DOI":"10.1007\/978-3-030-01252-6_33"},{"key":"10.1016\/j.patcog.2024.111199_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109875","article-title":"Memory efficient data-free distillation for continual learning","volume":"144","author":"Li","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111199_b35","first-page":"2990","article-title":"Continual learning with deep generative replay","volume":"30","author":"Shin","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111199_b36","first-page":"5962","article-title":"Memory replay gans: Learning to generate new categories without forgetting","volume":"31","author":"Wu","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111199_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109561","article-title":"Exemplar-free class incremental learning via discriminative and comparable parallel one-class classifiers","volume":"140","author":"Sun","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111199_b38","doi-asserted-by":"crossref","unstructured":"R. Aljundi, P. Chakravarty, T. Tuytelaars, Expert gate: Lifelong learning with a network of experts, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3366\u20133375.","DOI":"10.1109\/CVPR.2017.753"},{"year":"2020","series-title":"Routing networks with co-training for continual learning","author":"Collier","key":"10.1016\/j.patcog.2024.111199_b39"},{"year":"2017","series-title":"Pathnet: Evolution channels gradient descent in super neural networks","author":"Fernando","key":"10.1016\/j.patcog.2024.111199_b40"},{"year":"2021","series-title":"Generative replay-based continual zero-shot learning","author":"Gautam","key":"10.1016\/j.patcog.2024.111199_b41"},{"key":"10.1016\/j.patcog.2024.111199_b42","doi-asserted-by":"crossref","unstructured":"H.C. Kuchibhotla, S.S. Malagi, S. Chandhok, V.N. Balasubramanian, Unseen Classes at a Later Time? No Problem, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9245\u20139254.","DOI":"10.1109\/CVPR52688.2022.00903"},{"key":"10.1016\/j.patcog.2024.111199_b43","doi-asserted-by":"crossref","unstructured":"W. Zhang, P. Janson, K. Yi, I. Skorokhodov, M. Elhoseiny, Continual Zero-Shot Learning through Semantically Guided Generative Random Walks, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2023, pp. 11574\u201311585.","DOI":"10.1109\/ICCV51070.2023.01063"},{"key":"10.1016\/j.patcog.2024.111199_b44","series-title":"International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems","first-page":"365","article-title":"A contrastive method for continual generalized zero-shot learning","author":"Liang","year":"2023"},{"key":"10.1016\/j.patcog.2024.111199_b45","doi-asserted-by":"crossref","unstructured":"V. Verma, N. Mehta, K.J. Liang, A. Mishra, L. Carin, Meta-Learned Attribute Self-Interaction Network for Continual and Generalized Zero-Shot Learning, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 2721\u20132731.","DOI":"10.1109\/WACV57701.2024.00270"},{"key":"10.1016\/j.patcog.2024.111199_b46","doi-asserted-by":"crossref","unstructured":"A. Mishra, S. Krishna Reddy, A. Mittal, H.A. Murthy, A generative model for zero shot learning using conditional variational autoencoders, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 2188\u20132196.","DOI":"10.1109\/CVPRW.2018.00294"},{"year":"2018","series-title":"Efficient lifelong learning with a-gem","author":"Chaudhry","key":"10.1016\/j.patcog.2024.111199_b47"},{"key":"10.1016\/j.patcog.2024.111199_b48","series-title":"Proceedings of International Conference on Machine Learning","first-page":"4528","article-title":"Progress & compress: A scalable framework for continual learning","author":"Schwarz","year":"2018"},{"key":"10.1016\/j.patcog.2024.111199_b49","unstructured":"D. Kinga, J.B. Adam, et al., A method for stochastic optimization, in: Proceedings of International Conference on Learning Representations, Vol. 5, San Diego, California, 2015, p. 6."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009506?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009506?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T09:00:48Z","timestamp":1733562048000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324009506"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":49,"alternative-id":["S0031320324009506"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111199","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Dynamic VAEs via semantic-aligned matching for continual zero-shot learning","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111199","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111199"}}