{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:08:10Z","timestamp":1733634490039,"version":"3.30.1"},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.patcog.2024.111193","type":"journal-article","created":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T10:04:36Z","timestamp":1732010676000},"page":"111193","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["RNDiff: Rainfall nowcasting with Condition Diffusion Model"],"prefix":"10.1016","volume":"160","author":[{"given":"Xudong","family":"Ling","sequence":"first","affiliation":[]},{"given":"Chaorong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Fengqing","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yuanyuan","family":"Huang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.patcog.2024.111193_b1","doi-asserted-by":"crossref","first-page":"1691","DOI":"10.1175\/2010WAF2222417.1","article-title":"Nowcasting challenges during the Beijing olympics: Successes, failures, and implications for future nowcasting systems","volume":"25","author":"Wilson","year":"2010","journal-title":"Weather Forecast."},{"issue":"3","key":"10.1016\/j.patcog.2024.111193_b2","doi-asserted-by":"crossref","first-page":"1359","DOI":"10.5194\/hess-21-1359-2017","article-title":"Weather radar rainfall data in urban hydrology","volume":"21","author":"Thorndahl","year":"2017","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"10.1016\/j.patcog.2024.111193_b3","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1007\/s10712-009-9079-x","article-title":"Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall","volume":"31","author":"Villarini","year":"2010","journal-title":"Surveys Geophys."},{"issue":"12","key":"10.1016\/j.patcog.2024.111193_b4","doi-asserted-by":"crossref","first-page":"2859","DOI":"10.1175\/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2","article-title":"Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology","volume":"130","author":"Germann","year":"2002","journal-title":"Mon. Weather Rev."},{"issue":"6","key":"10.1016\/j.patcog.2024.111193_b5","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1175\/1520-0426(1993)010<0785:TTITAA>2.0.CO;2","article-title":"TITAN: Thunderstorm identification, tracking, analysis, and nowcasting\u2014A radar-based methodology","volume":"10","author":"Dixon","year":"1993","journal-title":"J. Atmos. Ocean. Technol."},{"issue":"5660","key":"10.1016\/j.patcog.2024.111193_b6","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1038\/273287a0","article-title":"Three-dimensional storm motion detection by conventional weather radar","volume":"273","author":"Rinehart","year":"1978","journal-title":"Nature"},{"issue":"7","key":"10.1016\/j.patcog.2024.111193_b7","doi-asserted-by":"crossref","first-page":"E1036","DOI":"10.1175\/BAMS-D-19-0119.1","article-title":"Improving high-impact numerical weather prediction with lidar and drone observations","volume":"101","author":"Leuenberger","year":"2020","journal-title":"Bull. Am. Meteorol. Soc."},{"issue":"11","key":"10.1016\/j.patcog.2024.111193_b8","doi-asserted-by":"crossref","first-page":"2175","DOI":"10.1175\/BAMS-D-18-0195.1","article-title":"Making the black box more transparent: Understanding the physical implications of machine learning","volume":"100","author":"McGovern","year":"2019","journal-title":"Bull. Am. Meteorol. Soc."},{"issue":"2194","key":"10.1016\/j.patcog.2024.111193_b9","first-page":"4489","article-title":"Learning spatiotemporal features with 3d convolutional networks","volume":"379","author":"Tran","year":"2015","journal-title":"Proc. IEEE Int. Conf. Comput. Vis."},{"key":"10.1016\/j.patcog.2024.111193_b10","doi-asserted-by":"crossref","first-page":"993","DOI":"10.3390\/w14060993","article-title":"Prediction of flow based on a CNN-LSTM combined deep learning approach","volume":"14","author":"Li","year":"2022","journal-title":"Water"},{"key":"10.1016\/j.patcog.2024.111193_b11","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108752","article-title":"Recurrent flow networks: A recurrent latent variable model for density estimation of urban mobility","volume":"129","author":"Gammelli","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111193_b12","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.patrec.2021.01.036","article-title":"SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture","volume":"145","author":"Trebing","year":"2021","journal-title":"Pattern Recognit. Lett."},{"issue":"7878","key":"10.1016\/j.patcog.2024.111193_b13","doi-asserted-by":"crossref","first-page":"672","DOI":"10.1038\/s41586-021-03854-z","article-title":"Skilful precipitation nowcasting using deep generative models of radar","volume":"597","author":"Ravuri","year":"2021","journal-title":"Nature"},{"key":"10.1016\/j.patcog.2024.111193_b14","article-title":"Convolutional LSTM network: A machine learning approach for precipitation nowcasting","volume":"28","author":"Shi","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2022","series-title":"Hierarchical text-conditional image generation with clip latents","author":"Ramesh","key":"10.1016\/j.patcog.2024.111193_b15"},{"key":"10.1016\/j.patcog.2024.111193_b16","first-page":"36479","article-title":"Photorealistic text-to-image diffusion models with deep language understanding","volume":"35","author":"Saharia","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111193_b17","doi-asserted-by":"crossref","unstructured":"R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis with latent diffusion models, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684\u201310695.","DOI":"10.1109\/CVPR52688.2022.01042"},{"key":"10.1016\/j.patcog.2024.111193_b18","series-title":"Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.patcog.2024.111193_b19","first-page":"8780","article-title":"Diffusion models beat gans on image synthesis","volume":"34","author":"Dhariwal","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111193_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107404","article-title":"U2-Net: Going deeper with nested U-structure for salient object detection","volume":"106","author":"Qin","year":"2020","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.patcog.2024.111193_b21","article-title":"Deep learning for precipitation nowcasting: A benchmark and a new model","volume":"30","author":"Shi","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111193_b22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2022.07.061","article-title":"The reconstitution predictive network for precipitation nowcasting","volume":"507","author":"Luo","year":"2022","journal-title":"Neurocomputing","ISSN":"https:\/\/id.crossref.org\/issn\/0925-2312","issn-type":"print"},{"key":"10.1016\/j.patcog.2024.111193_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2022.128197","article-title":"Adaptive precipitation nowcasting using deep learning and ensemble modeling","volume":"612","author":"Amini","year":"2022","journal-title":"J. Hydrol."},{"issue":"02","key":"10.1016\/j.patcog.2024.111193_b24","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1142\/S0218488598000094","article-title":"The vanishing gradient problem during learning recurrent neural nets and problem solutions","volume":"6","author":"Hochreiter","year":"1998","journal-title":"Internat. J. Uncertain. Fuzziness Knowledge-Based Systems"},{"key":"10.1016\/j.patcog.2024.111193_b25","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.neucom.2023.01.037","article-title":"Robust recurrent neural networks for time series forecasting","volume":"526","author":"Zhang","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2024.111193_b26","doi-asserted-by":"crossref","unstructured":"X. Liang, L. Lee, W. Dai, E.P. Xing, Dual motion GAN for future-flow embedded video prediction, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1744\u20131752.","DOI":"10.1109\/ICCV.2017.194"},{"key":"10.1016\/j.patcog.2024.111193_b27","doi-asserted-by":"crossref","unstructured":"S. Tulyakov, M.-Y. Liu, X. Yang, J. Kautz, Mocogan: Decomposing motion and content for video generation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1526\u20131535.","DOI":"10.1109\/CVPR.2018.00165"},{"key":"10.1016\/j.patcog.2024.111193_b28","doi-asserted-by":"crossref","unstructured":"Y. Wang, P. Bilinski, F. Bremond, A. Dantcheva, Imaginator: Conditional spatio-temporal gan for video generation, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 1160\u20131169.","DOI":"10.1109\/WACV45572.2020.9093492"},{"issue":"23","key":"10.1016\/j.patcog.2024.111193_b29","doi-asserted-by":"crossref","first-page":"5948","DOI":"10.3390\/rs14235948","article-title":"Two-stage UA-GAN for precipitation nowcasting","volume":"14","author":"Xu","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.patcog.2024.111193_b30","series-title":"International Conference on Artificial Intelligence and Statistics","first-page":"10555","article-title":"Increasing the accuracy and resolution of precipitation forecasts using deep generative models","author":"Price","year":"2022"},{"issue":"7878","key":"10.1016\/j.patcog.2024.111193_b31","doi-asserted-by":"crossref","first-page":"672","DOI":"10.1038\/s41586-021-03854-z","article-title":"Skilful precipitation nowcasting using deep generative models of radar","volume":"597","author":"Ravuri","year":"2021","journal-title":"Nature"},{"key":"10.1016\/j.patcog.2024.111193_b32","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2023.3261988","article-title":"Diffusion models in vision: A survey","author":"Croitoru","year":"2023","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111193_b33","series-title":"International Conference on Machine Learning","first-page":"2256","article-title":"Deep unsupervised learning using nonequilibrium thermodynamics","author":"Sohl-Dickstein","year":"2015"},{"key":"10.1016\/j.patcog.2024.111193_b34","first-page":"6840","article-title":"Denoising diffusion probabilistic models","volume":"33","author":"Ho","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111193_b35","doi-asserted-by":"crossref","unstructured":"D. Misra, T. Nalamada, A.U. Arasanipalai, Q. Hou, Rotate to attend: Convolutional triplet attention module, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 3139\u20133148.","DOI":"10.1109\/WACV48630.2021.00318"},{"key":"10.1016\/j.patcog.2024.111193_b36","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.patrec.2023.12.025","article-title":"TU2net-GAN: A temporal precipitation nowcasting model with multiple decoding modules","volume":"178","author":"Ling","year":"2024","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2024.111193_b37","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"year":"2014","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","key":"10.1016\/j.patcog.2024.111193_b38"},{"key":"10.1016\/j.patcog.2024.111193_b39","doi-asserted-by":"crossref","unstructured":"Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, A convnet for the 2020s, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11976\u201311986.","DOI":"10.1109\/CVPR52688.2022.01167"},{"key":"10.1016\/j.patcog.2024.111193_b40","doi-asserted-by":"crossref","unstructured":"S. Woo, S. Debnath, R. Hu, X. Chen, Z. Liu, I.S. Kweon, S. Xie, Convnext v2: Co-designing and scaling convnets with masked autoencoders, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 16133\u201316142.","DOI":"10.1109\/CVPR52729.2023.01548"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009440?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009440?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T09:00:29Z","timestamp":1733562029000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324009440"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":40,"alternative-id":["S0031320324009440"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111193","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"RNDiff: Rainfall nowcasting with Condition Diffusion Model","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111193","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111193"}}