{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:07:43Z","timestamp":1733634463445,"version":"3.30.1"},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,11,20]],"date-time":"2025-11-20T00:00:00Z","timestamp":1763596800000},"content-version":"am","delay-in-days":233,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100021692","name":"LabEx PRIMES","doi-asserted-by":"publisher","award":["ANR-11-LABX-0063","ANR-11-IDEX-0007","ANR-11-INBS-0006"],"id":[{"id":"10.13039\/501100021692","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.patcog.2024.111186","type":"journal-article","created":{"date-parts":[[2024,11,17]],"date-time":"2024-11-17T20:37:58Z","timestamp":1731875878000},"page":"111186","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Explainable monotonic networks and constrained learning for interpretable classification and weakly supervised anomaly detection"],"prefix":"10.1016","volume":"160","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1883-791X","authenticated-orcid":false,"given":"Valentine","family":"Wargnier-Dauchelle","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3630-5856","authenticated-orcid":false,"given":"Thomas","family":"Grenier","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2860-1700","authenticated-orcid":false,"given":"Fran\u00e7oise","family":"Durand-Dubief","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0046-2478","authenticated-orcid":false,"given":"Fran\u00e7ois","family":"Cotton","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3129-6874","authenticated-orcid":false,"given":"Micha\u00ebl","family":"Sdika","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2024.111186_b1","series-title":"18th Int. Symposium on Biomed. Imag.","first-page":"1062","article-title":"A more interpretable classifier for multiple sclerosis","author":"Wargnier-Dauchelle","year":"2021"},{"key":"10.1016\/j.patcog.2024.111186_b2","doi-asserted-by":"crossref","unstructured":"R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proc. of the IEEE Int. Conf. on Computer Vision, 2017, pp. 618\u2013626.","DOI":"10.1109\/ICCV.2017.74"},{"key":"10.1016\/j.patcog.2024.111186_b3","first-page":"1","article-title":"Improving performance of deep learning models with axiomatic attribution priors and expected gradients","author":"Erion","year":"2021","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111186_b4","doi-asserted-by":"crossref","unstructured":"A.S. Ross, M.C. Hughes, F. Doshi-Velez, Right for the right reasons: training differentiable models by constraining their explanations, in: Proc. of the 26th Int. Joint Conf. on AI, 2017, pp. 2662\u20132670.","DOI":"10.24963\/ijcai.2017\/371"},{"key":"10.1016\/j.patcog.2024.111186_b5","doi-asserted-by":"crossref","DOI":"10.1109\/TMI.2023.3282789","article-title":"A weakly supervised gradient attribution constraint for interpretable classification and anomaly detection","author":"Wargnier-Dauchelle","year":"2023","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.patcog.2024.111186_b6","series-title":"Int. MICCAI Brainlesion Workshop","first-page":"161","article-title":"Deep autoencoding models for unsupervised anomaly segmentation in brain MR images","author":"Baur","year":"2018"},{"key":"10.1016\/j.patcog.2024.111186_b7","series-title":"Int. Conf. on Med. Image Computing and Computer-Assisted Intervention","first-page":"289","article-title":"Unsupervised anomaly localization using variational auto-encoders","author":"Zimmerer","year":"2019"},{"key":"10.1016\/j.patcog.2024.111186_b8","doi-asserted-by":"crossref","unstructured":"J. Silva-Rodr\u00edguez, V. Naranjo, J. Dolz, Looking at the whole picture: constrained unsupervised anomaly segmentation, in: BMVC, 2021.","DOI":"10.1016\/j.media.2022.102526"},{"key":"10.1016\/j.patcog.2024.111186_b9","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.media.2019.01.010","article-title":"F-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks","volume":"54","author":"Schlegl","year":"2019","journal-title":"Med. Image Anal."},{"issue":"6","key":"10.1016\/j.patcog.2024.111186_b10","doi-asserted-by":"crossref","first-page":"906","DOI":"10.1109\/TNN.2010.2044803","article-title":"Monotone and partially monotone neural networks","volume":"21","author":"Daniels","year":"2010","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.patcog.2024.111186_b11","article-title":"Monotonic networks","volume":"vol. 10","author":"Sill","year":"1997"},{"key":"10.1016\/j.patcog.2024.111186_b12","article-title":"Deep lattice networks and partial monotonic functions","volume":"vol. 30","author":"You","year":"2017"},{"key":"10.1016\/j.patcog.2024.111186_b13","first-page":"15427","article-title":"Certified monotonic neural networks","volume":"vol. 33","author":"Liu","year":"2020"},{"key":"10.1016\/j.patcog.2024.111186_b14","series-title":"Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2021, Bilbao, Spain, September 13\u201317, 2021, Proc., Part I 21","first-page":"738","article-title":"The curious case of convex neural networks","author":"Sivaprasad","year":"2021"},{"key":"10.1016\/j.patcog.2024.111186_b15","series-title":"Int. Conf. on Machine Learning","first-page":"29338","article-title":"Constrained monotonic neural networks","author":"Runje","year":"2023"},{"key":"10.1016\/j.patcog.2024.111186_b16","series-title":"Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics","first-page":"249","article-title":"Understanding the difficulty of training deep feedforward neural networks","volume":"vol. 9","author":"Glorot","year":"2010"},{"key":"10.1016\/j.patcog.2024.111186_b17","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, in: Proc. of the IEEE Int. Conf. on Computer Vision, ICCV, 2015.","DOI":"10.1109\/ICCV.2015.123"},{"key":"10.1016\/j.patcog.2024.111186_b18","unstructured":"D. Mishkin, J. Matas, All you need is a good init, in: 4th Int. Conf. on Learning Representations, ICLR, 2016."},{"key":"10.1016\/j.patcog.2024.111186_b19","first-page":"841","article-title":"Counterfactual explanations without opening the black box: Automated decisions and the GDPR","volume":"31","author":"Wachter","year":"2017","journal-title":"Harv. JL Tech."},{"key":"10.1016\/j.patcog.2024.111186_b20","series-title":"Int. Conf. on Machine Learning","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"Ioffe","year":"2015"},{"year":"2016","series-title":"Instance normalization: The missing ingredient for fast stylization","author":"Ulyanov","key":"10.1016\/j.patcog.2024.111186_b21"},{"year":"2010","series-title":"Computational Statistics","author":"Gentle","key":"10.1016\/j.patcog.2024.111186_b22"},{"key":"10.1016\/j.patcog.2024.111186_b23","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognit., 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.patcog.2024.111186_b24","doi-asserted-by":"crossref","DOI":"10.4467\/20838476SI.18.003.10408","article-title":"Gradient regularization improves accuracy of discriminative models","volume":"27","author":"Varga","year":"2018","journal-title":"Schedae Inform."},{"year":"2020","series-title":"Brain tumor classification (MRI)","author":"Bhuvaji","key":"10.1016\/j.patcog.2024.111186_b25"},{"issue":"1","key":"10.1016\/j.patcog.2024.111186_b26","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.cell.2015.05.047","article-title":"Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis","volume":"162","author":"Levine","year":"2015","journal-title":"Cell"},{"issue":"1","key":"10.1016\/j.patcog.2024.111186_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2018.161","article-title":"The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions","volume":"5","author":"Tschandl","year":"2018","journal-title":"Sci. Data"},{"issue":"1","key":"10.1016\/j.patcog.2024.111186_b28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2018.308","article-title":"A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults","volume":"6","author":"Babayan","year":"2019","journal-title":"Sci. Data"},{"issue":"4","key":"10.1016\/j.patcog.2024.111186_b29","doi-asserted-by":"crossref","first-page":"2854","DOI":"10.1016\/j.neuroimage.2010.11.047","article-title":"Multi-parametric neuroimaging reproducibility: a 3-T resource study","volume":"54","author":"Landman","year":"2011","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.patcog.2024.111186_b30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2018.105","article-title":"Individual brain charting, a high-resolution fMRI dataset for cognitive mapping","volume":"5","author":"Pinho","year":"2018","journal-title":"Sci. Data"},{"issue":"10","key":"10.1016\/j.patcog.2024.111186_b31","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","article-title":"The multimodal brain tumor image segmentation benchmark (BRATS)","volume":"34","author":"Menze","year":"2014","journal-title":"IEEE Trans. Med. Imag."},{"issue":"2","key":"10.1016\/j.patcog.2024.111186_b32","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1006\/nimg.2002.1132","article-title":"Improved optimization for the robust and accurate linear registration and motion correction of brain images","volume":"17","author":"Jenkinson","year":"2002","journal-title":"Neuroimage"},{"issue":"17","key":"10.1016\/j.patcog.2024.111186_b33","doi-asserted-by":"crossref","first-page":"4952","DOI":"10.1002\/hbm.24750","article-title":"Automated brain extraction of multisequence MRI using artificial neural networks","volume":"40","author":"Isensee","year":"2019","journal-title":"Hum. Brain Mapping"},{"key":"10.1016\/j.patcog.2024.111186_b34","doi-asserted-by":"crossref","unstructured":"P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognit., 2017, pp. 1125\u20131134.","DOI":"10.1109\/CVPR.2017.632"},{"key":"10.1016\/j.patcog.2024.111186_b35","doi-asserted-by":"crossref","first-page":"vbad016","DOI":"10.1093\/bioadv\/vbad016","article-title":"MonoNet: Enhancing interpretability in neural networks via monotonic features","author":"Nguyen","year":"2023","journal-title":"Bioinform. Adv."},{"year":"2012","series-title":"Adadelta: an adaptive learning rate method","author":"Zeiler","key":"10.1016\/j.patcog.2024.111186_b36"},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.patcog.2024.111186_b37"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009373?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009373?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T09:00:21Z","timestamp":1733562021000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324009373"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":37,"alternative-id":["S0031320324009373"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111186","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Explainable monotonic networks and constrained learning for interpretable classification and weakly supervised anomaly detection","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111186","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111186"}}