{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:07:54Z","timestamp":1733634474621,"version":"3.30.1"},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.patcog.2024.111184","type":"journal-article","created":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T18:37:24Z","timestamp":1732127844000},"page":"111184","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Exploring Latent Transferability of feature components"],"prefix":"10.1016","volume":"160","author":[{"given":"Zhengshan","family":"Wang","sequence":"first","affiliation":[]},{"given":"Long","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Juan","family":"He","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0826-9453","authenticated-orcid":false,"given":"Linyao","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Fei-Yue","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.patcog.2024.111184_b1","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/MIS.2022.3197950","article-title":"From features engineering to scenarios engineering for trustworthy AI: I&I, C&C, and V&V","volume":"37","author":"Li","year":"2022","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.patcog.2024.111184_b2","first-page":"1","article-title":"Dynamic collaborative pricing for managing refueling demand of hydrogen fuel cell vehicles","author":"Yang","year":"2024","journal-title":"IEEE Trans. Transp. Electrif."},{"issue":"10","key":"10.1016\/j.patcog.2024.111184_b3","doi-asserted-by":"crossref","first-page":"17015","DOI":"10.1109\/TITS.2022.3161939","article-title":"Instance-level knowledge transfer for data-driven driver model adaptation with homogeneous domains","volume":"23","author":"Lu","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"11","key":"10.1016\/j.patcog.2024.111184_b4","doi-asserted-by":"crossref","first-page":"20217","DOI":"10.1109\/TITS.2022.3176397","article-title":"Parauda: Invariant feature learning with auxiliary synthetic samples for unsupervised domain adaptation","volume":"23","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"11","key":"10.1016\/j.patcog.2024.111184_b5","doi-asserted-by":"crossref","first-page":"1899","DOI":"10.1109\/JAS.2022.106022","article-title":"The DAO to metacontrol for metasystems in metaverses: The system of parallel control systems for knowledge automation and control intelligence in CPSS","volume":"9","author":"Wang","year":"2022","journal-title":"IEEE\/CAA J. Autom. Sin."},{"key":"10.1016\/j.patcog.2024.111184_b6","doi-asserted-by":"crossref","DOI":"10.1007\/978-981-97-5208-9","article-title":"The survey on multi-source data fusion in cyber-physical-social systems: Foundational infrastructure for industrial metaverses and industries 5.0","author":"Wang","year":"2024","journal-title":"Inf. Fusion"},{"issue":"59","key":"10.1016\/j.patcog.2024.111184_b7","first-page":"1","article-title":"Domain-adversarial training of neural networks","volume":"17","author":"Ganin","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2024.111184_b8","article-title":"Conditional adversarial domain adaptation","volume":"31","author":"Long","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111184_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120223","article-title":"Multiview latent space learning with progressively fine-tuned deep features for unsupervised domain adaptation","volume":"662","author":"Zhu","year":"2024","journal-title":"Inform. Sci."},{"key":"10.1016\/j.patcog.2024.111184_b10","doi-asserted-by":"crossref","unstructured":"Q. Wang, T. Breckon, Unsupervised domain adaptation via structured prediction based selective pseudo-labeling, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 6243\u20136250.","DOI":"10.1609\/aaai.v34i04.6091"},{"key":"10.1016\/j.patcog.2024.111184_b11","doi-asserted-by":"crossref","unstructured":"L. Chen, H. Chen, Z. Wei, X. Jin, X. Tan, Y. Jin, E. Chen, Reusing the task-specific classifier as a discriminator: Discriminator-free adversarial domain adaptation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 7181\u20137190.","DOI":"10.1109\/CVPR52688.2022.00704"},{"key":"10.1016\/j.patcog.2024.111184_b12","series-title":"International Conference on Machine Learning","first-page":"18378","article-title":"A closer look at smoothness in domain adversarial training","author":"Rangwani","year":"2022"},{"issue":"2","key":"10.1016\/j.patcog.2024.111184_b13","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1109\/JAS.2022.106004","article-title":"A Survey on Negative Transfer","volume":"10","author":"Zhang","year":"2023","journal-title":"IEEE\/CAA J. Autom. Sin."},{"key":"10.1016\/j.patcog.2024.111184_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108616","article-title":"Hierarchical feature disentangling network for universal domain adaptation","volume":"127","author":"Gao","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111184_b15","series-title":"Proceedings of the 39th International Conference on Machine Learning","first-page":"11455","article-title":"Partial disentanglement for domain adaptation","volume":"Vol. 162","author":"Kong","year":"2022"},{"key":"10.1016\/j.patcog.2024.111184_b16","series-title":"Physically Disentangled Intra- and Inter-Domain Adaptation for Varicolored Haze Removal","first-page":"5841","author":"Li","year":"2022"},{"key":"10.1016\/j.patcog.2024.111184_b17","doi-asserted-by":"crossref","first-page":"2407","DOI":"10.1109\/TMM.2021.3080516","article-title":"Informative feature disentanglement for unsupervised domain adaptation","volume":"24","author":"Deng","year":"2022","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.patcog.2024.111184_b18","first-page":"13834","article-title":"ToAlign: task-oriented alignment for unsupervised domain adaptation","volume":"34","author":"Wei","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"2","key":"10.1016\/j.patcog.2024.111184_b19","doi-asserted-by":"crossref","first-page":"746","DOI":"10.1109\/TCSS.2022.3144350","article-title":"Hackgan: Harmonious cross-network mapping using cyclegan with wasserstein\u2013procrustes learning for unsupervised network alignment","volume":"10","author":"Yang","year":"2022","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"key":"10.1016\/j.patcog.2024.111184_b20","article-title":"Generative adversarial nets","volume":"27","author":"Goodfellow","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"7","key":"10.1016\/j.patcog.2024.111184_b21","first-page":"8954","article-title":"Self-adversarial disentangling for specific domain adaptation","volume":"45","author":"Zhou","year":"2023","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111184_b22","doi-asserted-by":"crossref","unstructured":"Y. Liu, X. Tian, Y. Li, Z. Xiong, F. Wu, Compact Feature Learning for Multi-Domain Image Classification, in: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 7186\u20137194.","DOI":"10.1109\/CVPR.2019.00736"},{"key":"10.1016\/j.patcog.2024.111184_b23","first-page":"21061","article-title":"Self-training avoids using spurious features under domain shift","volume":"33","author":"Chen","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111184_b24","article-title":"Make the u in UDA matter: Invariant consistency learning for unsupervised domain adaptation","volume":"36","author":"Yue","year":"2024","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111184_b25","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XXI 16","first-page":"464","article-title":"Minimum class confusion for versatile domain adaptation","author":"Jin","year":"2020"},{"key":"10.1016\/j.patcog.2024.111184_b26","doi-asserted-by":"crossref","unstructured":"J. Wang, R. Du, D. Chang, K. Liang, Z. Ma, Domain Generalization via Frequency-domain-based Feature Disentanglement and Interaction, in: Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 4821\u20134829.","DOI":"10.1145\/3503161.3548267"},{"key":"10.1016\/j.patcog.2024.111184_b27","first-page":"1","article-title":"Unsupervised Domain Adaptation for Medical Image Segmentation by Disentanglement Learning and Self-Training","author":"Xie","year":"2022","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"12","key":"10.1016\/j.patcog.2024.111184_b28","doi-asserted-by":"crossref","first-page":"8562","DOI":"10.1109\/TCSVT.2022.3192135","article-title":"Unsupervised domain adaptation through dynamically aligning both the feature and label spaces","volume":"32","author":"Tian","year":"2022","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.patcog.2024.111184_b29","doi-asserted-by":"crossref","unstructured":"R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 618\u2013626.","DOI":"10.1109\/ICCV.2017.74"},{"key":"10.1016\/j.patcog.2024.111184_b30","first-page":"1","article-title":"Adversarial domain generalization defense via task-relevant feature alignment in cyber-physical systems","author":"Zhang","year":"2024","journal-title":"IEEE Trans. Reliab."},{"key":"10.1016\/j.patcog.2024.111184_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.120471","article-title":"Task-oriented contrastive learning for unsupervised domain adaptation","volume":"229","author":"Wei","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.patcog.2024.111184_b32","series-title":"Proceedings of the 36th International Conference on Machine Learning","first-page":"1081","article-title":"Transferability vs. Discriminability: Batch spectral penalization for adversarial domain adaptation","volume":"Vol. 97","author":"Chen","year":"2019"},{"key":"10.1016\/j.patcog.2024.111184_b33","doi-asserted-by":"crossref","unstructured":"Y. Yang, T. Kim, G. Wang, Multiple Classifiers Based Adversarial Training for Unsupervised Domain Adaptation, in: 2022 19th Conference on Robots and Vision, CRV, 2022, pp. 40\u201347.","DOI":"10.1109\/CRV55824.2022.00014"},{"key":"10.1016\/j.patcog.2024.111184_b34","doi-asserted-by":"crossref","unstructured":"J. Zhang, J. Huang, X. Jiang, S. Lu, Black-Box Unsupervised Domain Adaptation with Bi-Directional Atkinson-Shiffrin Memory, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, ICCV, 2023, pp. 11771\u201311782.","DOI":"10.1109\/ICCV51070.2023.01081"},{"year":"2022","series-title":"Local prediction aggregation: A frustratingly easy source-free domain adaptation method","author":"Yang","key":"10.1016\/j.patcog.2024.111184_b35"},{"key":"10.1016\/j.patcog.2024.111184_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109154","article-title":"Prototype-guided feature learning for unsupervised domain adaptation","volume":"135","author":"Du","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111184_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2024.111717","article-title":"Confidence-diffusion instance contrastive learning for unsupervised domain adaptation","volume":"293","author":"Tian","year":"2024","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.patcog.2024.111184_b38","doi-asserted-by":"crossref","unstructured":"S. Cui, S. Wang, J. Zhuo, L. Li, Q. Huang, Q. Tian, Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3941\u20133950.","DOI":"10.1109\/CVPR42600.2020.00400"},{"key":"10.1016\/j.patcog.2024.111184_b39","doi-asserted-by":"crossref","unstructured":"S. Li, M. Xie, F. Lv, C.H. Liu, J. Liang, C. Qin, W. Li, Semantic Concentration for Domain Adaptation, in: 2021 IEEE\/CVF International Conference on Computer Vision, ICCV, 2021, pp. 9082\u20139091.","DOI":"10.1109\/ICCV48922.2021.00897"},{"issue":"8","key":"10.1016\/j.patcog.2024.111184_b40","doi-asserted-by":"crossref","first-page":"4232","DOI":"10.1109\/TCSVT.2023.3242614","article-title":"Classification certainty maximization for unsupervised domain adaptation","volume":"33","author":"Yu","year":"2023","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.patcog.2024.111184_b41","doi-asserted-by":"crossref","unstructured":"H. Venkateswara, J. Eusebio, S. Chakraborty, S. Panchanathan, Deep Hashing Network for Unsupervised Domain Adaptation, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 5385\u20135394.","DOI":"10.1109\/CVPR.2017.572"},{"key":"10.1016\/j.patcog.2024.111184_b42","doi-asserted-by":"crossref","unstructured":"X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, B. Wang, Moment Matching for Multi-Source Domain Adaptation, 2019, pp. 1406\u20131415.","DOI":"10.1109\/ICCV.2019.00149"},{"year":"2017","series-title":"Visda: The visual domain adaptation challenge","author":"Peng","key":"10.1016\/j.patcog.2024.111184_b43"},{"key":"10.1016\/j.patcog.2024.111184_b44","doi-asserted-by":"crossref","unstructured":"J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical image database, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248\u2013255.","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"10.1016\/j.patcog.2024.111184_b45","doi-asserted-by":"crossref","unstructured":"J. Zhang, J. Huang, Z. Tian, S. Lu, Spectral unsupervised domain adaptation for visual recognition, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9829\u20139840.","DOI":"10.1109\/CVPR52688.2022.00960"},{"year":"2023","series-title":"To transfer or not transfer: Unified transferability metric and analysis","author":"Zhan","key":"10.1016\/j.patcog.2024.111184_b46"},{"key":"10.1016\/j.patcog.2024.111184_b47","series-title":"2019 IEEE International Conference on Image Processing","first-page":"2309","article-title":"An information-theoretic approach to transferability in task transfer learning","author":"Bao","year":"2019"},{"issue":"86","key":"10.1016\/j.patcog.2024.111184_b48","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"van der Maaten","year":"2008","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2024.111184_b49","series-title":"International Conference on Machine Learning","first-page":"97","article-title":"Learning transferable features with deep adaptation networks","author":"Long","year":"2015"},{"key":"10.1016\/j.patcog.2024.111184_b50","series-title":"International Conference on Machine Learning","first-page":"2208","article-title":"Deep transfer learning with joint adaptation networks","author":"Long","year":"2017"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S003132032400935X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S003132032400935X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T09:00:30Z","timestamp":1733562030000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S003132032400935X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":50,"alternative-id":["S003132032400935X"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111184","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Exploring Latent Transferability of feature components","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111184","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111184"}}