{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:07:55Z","timestamp":1733634475260,"version":"3.30.1"},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.patcog.2024.111183","type":"journal-article","created":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T20:59:07Z","timestamp":1731704347000},"page":"111183","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Dual Contrastive Label Enhancement"],"prefix":"10.1016","volume":"160","author":[{"ORCID":"https:\/\/orcid.org\/0009-0004-3284-3093","authenticated-orcid":false,"given":"Ren","family":"Guan","sequence":"first","affiliation":[]},{"given":"Yifei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xinyuan","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0001-0100-8106","authenticated-orcid":false,"given":"Bin","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3081-8781","authenticated-orcid":false,"given":"Jihua","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.patcog.2024.111183_b1","doi-asserted-by":"crossref","first-page":"1734","DOI":"10.1109\/TKDE.2016.2545658","article-title":"Label distribution learning","volume":"28","author":"Geng","year":"2016","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"6","key":"10.1016\/j.patcog.2024.111183_b2","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1002\/widm.1139","article-title":"Multi-label learning: a review of the state of the art and ongoing research","volume":"4","author":"Gibaja","year":"2014","journal-title":"Wiley Interdiscip. Rev. Data Min. Knowl. Discov."},{"key":"10.1016\/j.patcog.2024.111183_b3","article-title":"DPNet: Dual-path network for real-time object detection with lightweight attention","author":"Zhou","year":"2024","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.patcog.2024.111183_b4","article-title":"Boundary-guided lightweight semantic segmentation with multi-scale semantic context","author":"Zhou","year":"2024","journal-title":"IEEE Trans. Multimed."},{"issue":"4","key":"10.1016\/j.patcog.2024.111183_b5","doi-asserted-by":"crossref","first-page":"1632","DOI":"10.1109\/TKDE.2019.2947040","article-title":"Label enhancement for label distribution learning","volume":"33","author":"Xu","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111183_b6","doi-asserted-by":"crossref","unstructured":"Y. Gao, Y. Zhang, X. Geng, Label enhancement for label distribution learning via prior knowledge, in: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021, pp. 3223\u20133229.","DOI":"10.24963\/ijcai.2020\/446"},{"key":"10.1016\/j.patcog.2024.111183_b7","doi-asserted-by":"crossref","unstructured":"W. Zhu, X. Jia, W. Li, Privileged label enhancement with multi-label learning, in: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021, pp. 2376\u20132382.","DOI":"10.24963\/ijcai.2020\/329"},{"key":"10.1016\/j.patcog.2024.111183_b8","series-title":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"1678","article-title":"Modality-specific structure preserving hashing for cross-modal retrieval","author":"Liu","year":"2018"},{"key":"10.1016\/j.patcog.2024.111183_b9","doi-asserted-by":"crossref","unstructured":"S. Chen, J. Wang, Y. Chen, Z. Shi, X. Geng, Y. Rui, Label distribution learning on auxiliary label space graphs for facial expression recognition, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13984\u201313993.","DOI":"10.1109\/CVPR42600.2020.01400"},{"issue":"10","key":"10.1016\/j.patcog.2024.111183_b10","doi-asserted-by":"crossref","first-page":"2857","DOI":"10.1007\/s13042-022-01567-x","article-title":"Label enhancement with label-specific feature learning","volume":"13","author":"Li","year":"2022","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.patcog.2024.111183_b11","series-title":"Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence","first-page":"4353","article-title":"Contrastive label enhancement","author":"Wang","year":"2023"},{"issue":"1","key":"10.1016\/j.patcog.2024.111183_b12","first-page":"482","article-title":"Generalized label enhancement with sample correlations","volume":"35","author":"Zheng","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111183_b13","series-title":"Artificial Neural Networks in Pattern Recognition: Second IAPR Workshop, ANNPR 2006, Ulm, Germany, August 31\u2013September 2, 2006. Proceedings 2","first-page":"67","article-title":"A study of the robustness of KNN classifiers trained using soft labels","author":"El Gayar","year":"2006"},{"key":"10.1016\/j.patcog.2024.111183_b14","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1007\/s00521-006-0028-z","article-title":"Fuzzy SVM with a new fuzzy membership function","volume":"15","author":"Jiang","year":"2006","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.patcog.2024.111183_b15","series-title":"2015 IEEE International Conference on Data Mining","first-page":"251","article-title":"Leveraging implicit relative labeling-importance information for effective multi-label learning","author":"Li","year":"2015"},{"key":"10.1016\/j.patcog.2024.111183_b16","doi-asserted-by":"crossref","unstructured":"N. Xu, A. Tao, X. Geng, Label enhancement for label distribution learning, in: Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018, pp. 2926\u20132932.","DOI":"10.24963\/ijcai.2018\/406"},{"key":"10.1016\/j.patcog.2024.111183_b17","doi-asserted-by":"crossref","unstructured":"H. Tang, J. Zhu, Q. Zheng, J. Wang, S. Pang, Z. Li, Label enhancement with sample correlations via low-rank representation, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 5932\u20135939.","DOI":"10.1609\/aaai.v34i04.6053"},{"key":"10.1016\/j.patcog.2024.111183_b18","doi-asserted-by":"crossref","unstructured":"Q. Zheng, J. Zhu, H. Tang, Label information bottleneck for label enhancement, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7497\u20137506.","DOI":"10.1109\/CVPR52729.2023.00724"},{"key":"10.1016\/j.patcog.2024.111183_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110447","article-title":"Label enhancement via manifold approximation and projection with graph convolutional network","volume":"152","author":"Tan","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111183_b20","series-title":"International Conference on Machine Learning","first-page":"10597","article-title":"Variational label enhancement","author":"Xu","year":"2020"},{"key":"10.1016\/j.patcog.2024.111183_b21","unstructured":"J. Li, P. Zhou, C. Xiong, S. Hoi, Prototypical Contrastive Learning of Unsupervised Representations, in: International Conference on Learning Representations, 2021."},{"key":"10.1016\/j.patcog.2024.111183_b22","first-page":"21271","article-title":"Bootstrap your own latent-a new approach to self-supervised learning","volume":"33","author":"Grill","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111183_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109739","article-title":"FedCL: Federated contrastive learning for multi-center medical image classification","volume":"143","author":"Liu","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111183_b24","doi-asserted-by":"crossref","unstructured":"S. Zhang, R. Xu, C. Xiong, C. Ramaiah, Use all the labels: A hierarchical multi-label contrastive learning framework, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16660\u201316669.","DOI":"10.1109\/CVPR52688.2022.01616"},{"key":"10.1016\/j.patcog.2024.111183_b25","doi-asserted-by":"crossref","unstructured":"J. Xu, H. Tang, Y. Ren, L. Peng, X. Zhu, L. He, Multi-level feature learning for contrastive multi-view clustering, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16051\u201316060.","DOI":"10.1109\/CVPR52688.2022.01558"},{"key":"10.1016\/j.patcog.2024.111183_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.109448","article-title":"Dual-channel graph contrastive learning for self-supervised graph-level representation learning","volume":"139","author":"Luo","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111183_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110874","article-title":"CARLA: Self-supervised contrastive representation learning for time series anomaly detection","volume":"157","author":"Darban","year":"2025","journal-title":"Pattern Recognit."},{"issue":"4","key":"10.1016\/j.patcog.2024.111183_b28","first-page":"4447","article-title":"Dual contrastive prediction for incomplete multi-view representation learning","volume":"45","author":"Lin","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111183_b29","series-title":"Chinese Conference on Pattern Recognition","first-page":"349","article-title":"Multi-label ranking with LSTM for document classification","author":"Yan","year":"2016"},{"key":"10.1016\/j.patcog.2024.111183_b30","doi-asserted-by":"crossref","unstructured":"A. Kanehira, T. Harada, Multi-label ranking from positive and unlabeled data, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5138\u20135146.","DOI":"10.1109\/CVPR.2016.555"},{"key":"10.1016\/j.patcog.2024.111183_b31","series-title":"Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition","first-page":"200","article-title":"Coding facial expressions with gabor wavelets","author":"Lyons","year":"1998"},{"key":"10.1016\/j.patcog.2024.111183_b32","series-title":"7th International Conference on Automatic Face and Gesture Recognition","first-page":"211","article-title":"A 3D facial expression database for facial behavior research","author":"Yin","year":"2006"},{"key":"10.1016\/j.patcog.2024.111183_b33","series-title":"IJCAI","first-page":"3511","article-title":"Pre-release prediction of crowd opinion on movies by label distribution learning.","author":"Geng","year":"2015"},{"key":"10.1016\/j.patcog.2024.111183_b34","doi-asserted-by":"crossref","unstructured":"X. Geng, L. Luo, Multilabel ranking with inconsistent rankers, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3742\u20133747.","DOI":"10.1109\/CVPR.2014.478"},{"issue":"25","key":"10.1016\/j.patcog.2024.111183_b35","doi-asserted-by":"crossref","first-page":"14863","DOI":"10.1073\/pnas.95.25.14863","article-title":"Cluster analysis and display of genome-wide expression patterns","volume":"95","author":"Eisen","year":"1998","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"9","key":"10.1016\/j.patcog.2024.111183_b36","doi-asserted-by":"crossref","first-page":"1757","DOI":"10.1016\/j.patcog.2004.03.009","article-title":"Learning multi-label scene classification","volume":"37","author":"Boutell","year":"2004","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111183_b37","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2024.111183_b38","doi-asserted-by":"crossref","unstructured":"H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.-A. Muller, Deep Neural Network Ensembles for Time Series Classification, in: 2019 International Joint Conference on Neural Networks, IJCNN, 2019, pp. 1\u20136.","DOI":"10.1109\/IJCNN.2019.8852316"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009348?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009348?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T09:00:08Z","timestamp":1733562008000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324009348"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":38,"alternative-id":["S0031320324009348"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111183","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Dual Contrastive Label Enhancement","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111183","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111183"}}