{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:08:37Z","timestamp":1733634517634,"version":"3.30.1"},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100022963","name":"Key Research and Development Program of Zhejiang Province","doi-asserted-by":"publisher","award":["2022C03114"],"id":[{"id":"10.13039\/100022963","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11775161","62174121","62234008"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004731","name":"Zhejiang Province Natural Science Foundation","doi-asserted-by":"publisher","award":["LY21A040001"],"id":[{"id":"10.13039\/501100004731","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.patcog.2024.111179","type":"journal-article","created":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T02:02:08Z","timestamp":1731636128000},"page":"111179","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Adaptive learning rate algorithms based on the improved Barzilai\u2013Borwein method"],"prefix":"10.1016","volume":"160","author":[{"given":"Zhi-Jun","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4998-793X","authenticated-orcid":false,"given":"Hong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhou-Xiang","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Shuai-Ye","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Peng-Jun","family":"Wang","sequence":"additional","affiliation":[]},{"given":"He-Bei","family":"Gao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2024.111179_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108893","article-title":"Learning deep morphological networks with neural architecture search","volume":"131","author":"Hu","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111179_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108776","article-title":"Stochastic batch size for adaptive regularization in deep network optimization","volume":"129","author":"Nakamura","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111179_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107701","article-title":"Surrogate network-based sparseness hyper-parameter optimization for deep expression recognition","volume":"111","author":"Xie","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111179_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2024.107881","article-title":"A comprehensive review of synthetic data generation in smart farming by using variational autoencoder and generative adversarial network","volume":"131","author":"Akkem","year":"2024","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"3","key":"10.1016\/j.patcog.2024.111179_b5","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevA.103.032405","article-title":"Neural-network-based multistate solver for a static Schr\u00f6dinger equation","volume":"103","author":"Li","year":"2021","journal-title":"Phys. Rev. A"},{"key":"10.1016\/j.patcog.2024.111179_b6","doi-asserted-by":"crossref","first-page":"4688","DOI":"10.17485\/IJST\/v16i48.2850","article-title":"Streamlit application for advanced ensemble learning methods in crop recommendation systems\u2013a review and implementation","volume":"16","author":"Akkem","year":"2023","journal-title":"Indian J. Sci. Technol."},{"key":"10.1016\/j.patcog.2024.111179_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2023.105899","article-title":"Smart farming using artificial intelligence: A review","volume":"120","author":"Akkem","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.patcog.2024.111179_b8","first-page":"1","article-title":"Streamlit-based enhancing crop recommendation systems with advanced explainable artificial intelligence for smart farming","author":"Akkem","year":"2024","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.patcog.2024.111179_b9","article-title":"A gradient optimization and manifold preserving based binary neural network for point cloud","author":"Zhao","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111179_b10","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1214\/aoms\/1177729586","article-title":"A stochastic approximation method","author":"Robbins","year":"1951","journal-title":"Ann. Math. Stat."},{"issue":"2","key":"10.1016\/j.patcog.2024.111179_b11","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1137\/16M1080173","article-title":"Optimization methods for large-scale machine learning","volume":"60","author":"Bottou","year":"2018","journal-title":"Siam Rev."},{"issue":"1","key":"10.1016\/j.patcog.2024.111179_b12","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1093\/imanum\/8.1.141","article-title":"Two-point step size gradient methods","volume":"8","author":"Barzilai","year":"1988","journal-title":"IMA J. Numer. Anal."},{"key":"10.1016\/j.patcog.2024.111179_b13","series-title":"International Conference on Machine Learning","first-page":"1139","article-title":"On the importance of initialization and momentum in deep learning","author":"Sutskever","year":"2013"},{"key":"10.1016\/j.patcog.2024.111179_b14","first-page":"543","article-title":"A method for solving the convex programming problem with convergence rate O (1\/k\u0302 2)","volume":"269","author":"Nesterov","year":"1983","journal-title":"Dokl. akad. nauk Sssr"},{"key":"10.1016\/j.patcog.2024.111179_b15","article-title":"Rmsprop: Divide the gradient by a running average of its recent magnitude. coursera: Neural networks for machine learning","volume":"17","author":"Tieleman","year":"2012","journal-title":"COURSERA Neural Networks Mach. Learn."},{"year":"2012","series-title":"Adadelta: an adaptive learning rate method","author":"Zeiler","key":"10.1016\/j.patcog.2024.111179_b16"},{"key":"10.1016\/j.patcog.2024.111179_b17","unstructured":"D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: International Conference on Learning Representations (Poster), 2015."},{"key":"10.1016\/j.patcog.2024.111179_b18","unstructured":"S.J. Reddi, S. Kale, S. Kumar, On the Convergence of Adam and Beyond, in: International Conference on Learning Representations, 2018."},{"year":"2017","series-title":"Improving generalization performance by switching from adam to sgd","author":"Keskar","key":"10.1016\/j.patcog.2024.111179_b19"},{"key":"10.1016\/j.patcog.2024.111179_b20","unstructured":"L. Luo, Y. Xiong, Y. Liu, X. Sun, Adaptive Gradient Methods with Dynamic Bound of Learning Rate, in: International Conference on Learning Representations, 2018."},{"key":"10.1016\/j.patcog.2024.111179_b21","first-page":"18795","article-title":"Adabelief optimizer: Adapting stepsizes by the belief in observed gradients","volume":"33","author":"Zhuang","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.patcog.2024.111179_b22","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1137\/S1052623494266365","article-title":"The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem","volume":"7","author":"Raydan","year":"1997","journal-title":"SIAM J. Optim."},{"issue":"1","key":"10.1016\/j.patcog.2024.111179_b23","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1023\/A:1014838419611","article-title":"Modified two-point stepsize gradient methods for unconstrained optimization","volume":"22","author":"Dai","year":"2002","journal-title":"Comput. Optim. Appl."},{"issue":"2","key":"10.1016\/j.patcog.2024.111179_b24","doi-asserted-by":"crossref","first-page":"626","DOI":"10.1007\/s10957-012-0265-5","article-title":"Scaling on the spectral gradient method","volume":"158","author":"Biglari","year":"2013","journal-title":"J. Optim. Theory Appl."},{"issue":"4","key":"10.1016\/j.patcog.2024.111179_b25","doi-asserted-by":"crossref","first-page":"845","DOI":"10.1007\/s11590-017-1150-9","article-title":"A new adaptive barzilai and borwein method for unconstrained optimization","volume":"12","author":"Liu","year":"2018","journal-title":"Optim. Lett."},{"issue":"6","key":"10.1016\/j.patcog.2024.111179_b26","doi-asserted-by":"crossref","first-page":"916","DOI":"10.4208\/jcm.1911-m2019-0171","article-title":"Stabilized Barzilai-Borwein method","volume":"37","author":"Burdakov","year":"2019","journal-title":"J. Comput. Math."},{"key":"10.1016\/j.patcog.2024.111179_b27","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.ins.2015.03.073","article-title":"Stochastic gradient descent with Barzilai\u2013Borwein update step for SVM","volume":"316","author":"Sopy\u0142a","year":"2015","journal-title":"Inform. Sci."},{"issue":"4","key":"10.1016\/j.patcog.2024.111179_b28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2086737.2086743","article-title":"Large linear classification when data cannot fit in memory","volume":"5","author":"Yu","year":"2012","journal-title":"ACM Trans. Knowl. Discov. Data (TKDD)"},{"key":"10.1016\/j.patcog.2024.111179_b29","first-page":"pp","article-title":"Barzilai-borwein step size for stochastic gradient descent","volume":"29","author":"Tan","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111179_b30","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.patrec.2019.08.029","article-title":"Barzilai\u2013Borwein-based adaptive learning rate for deep learning","volume":"128","author":"Liang","year":"2019","journal-title":"Pattern Recognit. Lett."},{"year":"2020","series-title":"Grokking Deep Reinforcement Learning","author":"Morales","key":"10.1016\/j.patcog.2024.111179_b31"},{"key":"10.1016\/j.patcog.2024.111179_b32","unstructured":"X. Chen, S. Liu, R. Sun, M. Hong, On the convergence of a class of Adam-type algorithms for non-convex optimization, in: International Conference on Learning Representations, 2019."},{"key":"10.1016\/j.patcog.2024.111179_b33","doi-asserted-by":"crossref","unstructured":"Y. Yan, T. Yang, Z. Li, Q. Lin, Y. Yang, A unified analysis of stochastic momentum methods for deep learning, in: Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018, pp. 2955\u20132961.","DOI":"10.24963\/ijcai.2018\/410"},{"key":"10.1016\/j.patcog.2024.111179_b34","unstructured":"K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Representations, 2015."},{"key":"10.1016\/j.patcog.2024.111179_b35","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.patcog.2024.111179_b36","doi-asserted-by":"crossref","unstructured":"G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"issue":"11","key":"10.1016\/j.patcog.2024.111179_b37","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proc. IEEE"},{"year":"2009","series-title":"Learning Multiple Layers of Features from Tiny Images","author":"Krizhevsky","key":"10.1016\/j.patcog.2024.111179_b38"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009300?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009300?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T09:00:09Z","timestamp":1733562009000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324009300"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":38,"alternative-id":["S0031320324009300"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111179","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adaptive learning rate algorithms based on the improved Barzilai\u2013Borwein method","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111179","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111179"}}