{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:08:36Z","timestamp":1733634516974,"version":"3.30.1"},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.patcog.2024.111173","type":"journal-article","created":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T18:37:25Z","timestamp":1732127845000},"page":"111173","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Distilling heterogeneous knowledge with aligned biological entities for histological image classification"],"prefix":"10.1016","volume":"160","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-5745-5530","authenticated-orcid":false,"given":"Kang","family":"Wang","sequence":"first","affiliation":[]},{"given":"Feiyang","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Dayan","family":"Guan","sequence":"additional","affiliation":[]},{"given":"Jia","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7059-0929","authenticated-orcid":false,"given":"Jing","family":"Qin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.patcog.2024.111173_b1","first-page":"11","article-title":"American cancer society guidelines for the early detection of cancer, 2006","volume":"56","author":"Smith","year":"2006","journal-title":"CA: Cancer J. Clin."},{"issue":"8","key":"10.1016\/j.patcog.2024.111173_b2","doi-asserted-by":"crossref","first-page":"2854","DOI":"10.1109\/TMI.2024.3381239","article-title":"Breast cancer classification from digital pathology images via connectivity-aware graph transformer","volume":"43","author":"Wang","year":"2024","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"6","key":"10.1016\/j.patcog.2024.111173_b3","doi-asserted-by":"crossref","first-page":"1093","DOI":"10.1016\/j.patcog.2008.08.027","article-title":"Computer-aided prognosis of neuroblastoma on whole-slide images: Classification of stromal development","volume":"42","author":"Sertel","year":"2009","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111173_b4","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1007\/s10620-014-3373-2","article-title":"The risk of colorectal cancer in patients with ulcerative colitis","volume":"60","author":"Nowacki","year":"2015","journal-title":"Dig. Dis. Sci."},{"key":"10.1016\/j.patcog.2024.111173_b5","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.csbj.2018.01.001","article-title":"Machine learning methods for histopathological image analysis","volume":"16","author":"Komura","year":"2018","journal-title":"Comput. Struct. Biotechnol. J."},{"key":"10.1016\/j.patcog.2024.111173_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102264","article-title":"Hierarchical graph representations in digital pathology","volume":"75","author":"Pati","year":"2022","journal-title":"Med. Image Anal."},{"year":"2021","series-title":"Graph neural networks with learnable structural and positional representations","author":"Dwivedi","key":"10.1016\/j.patcog.2024.111173_b7"},{"key":"10.1016\/j.patcog.2024.111173_b8","first-page":"21618","article-title":"Rethinking graph transformers with spectral attention","volume":"34","author":"Kreuzer","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111173_b9","article-title":"Do transformers really perform badly for graph representation?","volume":"34","author":"Ying","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2015","series-title":"Distilling the knowledge in a neural network","author":"Hinton","key":"10.1016\/j.patcog.2024.111173_b10"},{"key":"10.1016\/j.patcog.2024.111173_b11","doi-asserted-by":"crossref","unstructured":"Y. Yang, J. Qiu, M. Song, D. Tao, X. Wang, Distilling knowledge from graph convolutional networks, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7074\u20137083.","DOI":"10.1109\/CVPR42600.2020.00710"},{"key":"10.1016\/j.patcog.2024.111173_b12","doi-asserted-by":"crossref","unstructured":"C. Zhang, J. Liu, K. Dang, W. Zhang, Multi-scale distillation from multiple graph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 4337\u20134344.","DOI":"10.1609\/aaai.v36i4.20354"},{"key":"10.1016\/j.patcog.2024.111173_b13","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.media.2016.08.008","article-title":"Gland segmentation in colon histology images: The glas challenge contest","volume":"35","author":"Sirinukunwattana","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.patcog.2024.111173_b14","series-title":"Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis","first-page":"208","article-title":"Hact-net: A hierarchical cell-to-tissue graph neural network for histopathological image classification","author":"Pati","year":"2020"},{"issue":"1","key":"10.1016\/j.patcog.2024.111173_b15","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pmed.1002730","article-title":"Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study","volume":"16","author":"Kather","year":"2019","journal-title":"PLoS Med."},{"key":"10.1016\/j.patcog.2024.111173_b16","article-title":"Generative models for graph-based protein design","volume":"32","author":"Ingraham","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"6","key":"10.1016\/j.patcog.2024.111173_b17","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab159","article-title":"Utilizing graph machine learning within drug discovery and development","volume":"22","author":"Gaudelet","year":"2021","journal-title":"Brief. Bioinform."},{"key":"10.1016\/j.patcog.2024.111173_b18","unstructured":"M. Welling, T.N. Kipf, Semi-supervised classification with graph convolutional networks, in: J. International Conference on Learning Representations, ICLR 2017, 2016."},{"key":"10.1016\/j.patcog.2024.111173_b19","series-title":"International Conference on Machine Learning","first-page":"1263","article-title":"Neural message passing for quantum chemistry","author":"Gilmer","year":"2017"},{"key":"10.1016\/j.patcog.2024.111173_b20","first-page":"13260","article-title":"Principal neighbourhood aggregation for graph nets","volume":"33","author":"Corso","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111173_b21","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"636","article-title":"Learning whole-slide segmentation from inexact and incomplete labels using tissue graphs","author":"Anklin","year":"2021"},{"year":"2019","series-title":"Graph neural networks exponentially lose expressive power for node classification","author":"Oono","key":"10.1016\/j.patcog.2024.111173_b22"},{"year":"2020","series-title":"On the bottleneck of graph neural networks and its practical implications","author":"Alon","key":"10.1016\/j.patcog.2024.111173_b23"},{"key":"10.1016\/j.patcog.2024.111173_b24","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2020","series-title":"A generalization of transformer networks to graphs","author":"Dwivedi","key":"10.1016\/j.patcog.2024.111173_b25"},{"key":"10.1016\/j.patcog.2024.111173_b26","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.neucom.2021.04.102","article-title":"Preparing lessons: Improve knowledge distillation with better supervision","volume":"454","author":"Wen","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2024.111173_b27","article-title":"A category-aware curriculum learning for data-free knowledge distillation","author":"Li","year":"2024","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.patcog.2024.111173_b28","series-title":"Interspeech","first-page":"3697","article-title":"Efficient knowledge distillation from an ensemble of teachers","author":"Fukuda","year":"2017"},{"key":"10.1016\/j.patcog.2024.111173_b29","doi-asserted-by":"crossref","unstructured":"F. Yuan, L. Shou, J. Pei, W. Lin, M. Gong, Y. Fu, D. Jiang, Reinforced multi-teacher selection for knowledge distillation, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 14284\u201314291.","DOI":"10.1609\/aaai.v35i16.17680"},{"key":"10.1016\/j.patcog.2024.111173_b30","series-title":"ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"4498","article-title":"Confidence-aware multi-teacher knowledge distillation","author":"Zhang","year":"2022"},{"key":"10.1016\/j.patcog.2024.111173_b31","doi-asserted-by":"crossref","unstructured":"W. Park, D. Kim, Y. Lu, M. Cho, Relational knowledge distillation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3967\u20133976.","DOI":"10.1109\/CVPR.2019.00409"},{"key":"10.1016\/j.patcog.2024.111173_b32","series-title":"ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"8484","article-title":"Deep geometric knowledge distillation with graphs","author":"Lassance","year":"2020"},{"key":"10.1016\/j.patcog.2024.111173_b33","doi-asserted-by":"crossref","unstructured":"Y. Jing, Y. Yang, X. Wang, M. Song, D. Tao, Amalgamating knowledge from heterogeneous graph neural networks, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15709\u201315718.","DOI":"10.1109\/CVPR46437.2021.01545"},{"key":"10.1016\/j.patcog.2024.111173_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101563","article-title":"Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images","volume":"58","author":"Graham","year":"2019","journal-title":"Med. Image Anal."},{"issue":"11","key":"10.1016\/j.patcog.2024.111173_b35","doi-asserted-by":"crossref","first-page":"2274","DOI":"10.1109\/TPAMI.2012.120","article-title":"Slic superpixels compared to state-of-the-art superpixel methods","volume":"34","author":"Achanta","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111173_b36","article-title":"Pytorch: An imperative style, high-performance deep learning library","volume":"32","author":"Paszke","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111173_b37","unstructured":"M.Y. Wang, Deep graph library: Towards efficient and scalable deep learning on graphs, in: ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019."},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.patcog.2024.111173_b38"},{"key":"10.1016\/j.patcog.2024.111173_b39","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2022: 25th International Conference, Singapore, September (2022) 18\u201322, Proceedings, Part II","first-page":"181","article-title":"Spatial-hierarchical graph neural network with dynamic structure learning for histological image classification","author":"Hou","year":"2022"},{"key":"10.1016\/j.patcog.2024.111173_b40","doi-asserted-by":"crossref","unstructured":"D. Chen, J.-P. Mei, Y. Zhang, C. Wang, Z. Wang, Y. Feng, C. Chen, Cross-layer distillation with semantic calibration, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 7028\u20137036.","DOI":"10.1609\/aaai.v35i8.16865"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009245?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009245?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T08:59:50Z","timestamp":1733561990000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324009245"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":40,"alternative-id":["S0031320324009245"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111173","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Distilling heterogeneous knowledge with aligned biological entities for histological image classification","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111173","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111173"}}