{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:07:50Z","timestamp":1733634470203,"version":"3.30.1"},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.patcog.2024.111172","type":"journal-article","created":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T11:12:03Z","timestamp":1731582723000},"page":"111172","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Progressive label enhancement"],"prefix":"10.1016","volume":"160","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3335-3959","authenticated-orcid":false,"given":"Zhiqiang","family":"Kou","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2734-7138","authenticated-orcid":false,"given":"Jing","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3907-6550","authenticated-orcid":false,"given":"Yuheng","family":"Jia","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7729-0622","authenticated-orcid":false,"given":"Xin","family":"Geng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.patcog.2024.111172_b1","doi-asserted-by":"crossref","first-page":"1734","DOI":"10.1109\/TKDE.2016.2545658","article-title":"Label distribution learning","volume":"28","author":"Geng","year":"2016","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111172_b2","unstructured":"X. Geng, P. Hou, Pre-release Prediction of Crowd Opinion on Movies by Label Distribution Learning, in: Proc. of the Int. Joint Conf. on Artificial Intelligence, 2015."},{"key":"10.1016\/j.patcog.2024.111172_b3","first-page":"302","article-title":"Soft video parsing by label distribution learning","volume":"13","author":"Geng","year":"2017","journal-title":"Front. Comput. Sci."},{"key":"10.1016\/j.patcog.2024.111172_b4","doi-asserted-by":"crossref","unstructured":"J. Yang, L. Chen, L. Zhang, X. Sun, D. She, S.-P. Lu, M.-M. Cheng, Historical Context-based Style Classification of Painting Images via Label Distribution Learning, in: Proc. of the 26th ACM Int. Conf. on Multimedia, 2018.","DOI":"10.1145\/3240508.3240593"},{"key":"10.1016\/j.patcog.2024.111172_b5","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/TII.2021.3075989","article-title":"Toward children\u2019s empathy ability analysis: Joint facial expression recognition and intensity estimation using label distribution learning","volume":"18","author":"Chen","year":"2021","journal-title":"Trans Ind. Informat."},{"issue":"4","key":"10.1016\/j.patcog.2024.111172_b6","doi-asserted-by":"crossref","first-page":"1632","DOI":"10.1109\/TKDE.2019.2947040","article-title":"Label enhancement for label distribution learning","volume":"33","author":"Xu","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111172_b7","doi-asserted-by":"crossref","unstructured":"X. Zhao, Y. An, N. Xu, X. Geng, Fusion Label Enhancement for Multi-Label Learning, in: Proc. of the 30th Int. Joint Conf. on Artificial Intelligence, IJCAI, 2022, pp. 3773\u20133779.","DOI":"10.24963\/ijcai.2022\/524"},{"key":"10.1016\/j.patcog.2024.111172_b8","doi-asserted-by":"crossref","unstructured":"N. Xu, J. Lv, X. Geng, Partial Label Learning via Label Enhancement, in: Proc. of the 33rd AAAI Conf. on Artificial Intelligence, 2019, pp. 5557\u20135564.","DOI":"10.1609\/aaai.v33i01.33015557"},{"key":"10.1016\/j.patcog.2024.111172_b9","doi-asserted-by":"crossref","unstructured":"Y. Gao, Y. Zhang, X. Geng, Label Enhancement for Label Distribution Learning via Prior Knowledge, in: Proc. of the 29th Int. Joint Conf. on Artificial Intelligence, IJCAI, 2020, pp. 3223\u20133229.","DOI":"10.24963\/ijcai.2020\/446"},{"key":"10.1016\/j.patcog.2024.111172_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110426","article-title":"Two-stage label distribution learning with label-independent prediction based on label-specific features","volume":"267","author":"Li","year":"2023","journal-title":"Knowl. Based. Syst."},{"key":"10.1016\/j.patcog.2024.111172_b11","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110898","article-title":"A novel granular ball computing-based fuzzy rough set for feature selection in label distribution learning","volume":"278","author":"Qian","year":"2023","journal-title":"Knowl. Based. Syst."},{"key":"10.1016\/j.patcog.2024.111172_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106690","article-title":"Bidirectional loss function for label enhancement and distribution learning","volume":"213","author":"Liu","year":"2021","journal-title":"Knowl. Based. Syst."},{"key":"10.1016\/j.patcog.2024.111172_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105684","article-title":"Mutual information-based label distribution feature selection for multi-label learning","volume":"195","author":"Qian","year":"2020","journal-title":"Knowl. Based. Syst."},{"key":"10.1016\/j.patcog.2024.111172_b14","doi-asserted-by":"crossref","unstructured":"S. Si, J. Wang, J. Peng, J. Xiao, Towards Speaker Age Estimation With Label Distribution Learning, in: 2022 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, 2022, pp. 4618\u20134622.","DOI":"10.1109\/ICASSP43922.2022.9746378"},{"key":"10.1016\/j.patcog.2024.111172_b15","doi-asserted-by":"crossref","first-page":"1605","DOI":"10.1109\/TAFFC.2020.3022732","article-title":"Facial depression recognition by deep joint label distribution and metric learning","volume":"13","author":"Zhou","year":"2022","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.patcog.2024.111172_b16","doi-asserted-by":"crossref","unstructured":"X. Wu, N. Wen, J. Liang, Y.-K. Lai, D. She, M.-M. Cheng, J. Yang, Joint Acne Image Grading and Counting via Label Distribution Learning, in: 2019 IEEE\/CVF Int. Conf. on Computer Vision, ICCV, 2019, pp. 10641\u201310650.","DOI":"10.1109\/ICCV.2019.01074"},{"key":"10.1016\/j.patcog.2024.111172_b17","doi-asserted-by":"crossref","unstructured":"W.C. de Melo, E. Granger, A. Hadid, Depression Detection Based on Deep Distribution Learning, in: 2019 IEEE Inter. Conf. on Image Proc., ICIP, 2019, pp. 4544\u20134548.","DOI":"10.1109\/ICIP.2019.8803467"},{"key":"10.1016\/j.patcog.2024.111172_b18","doi-asserted-by":"crossref","first-page":"5691","DOI":"10.1109\/TIP.2019.2922818","article-title":"Indoor crowd counting by mixture of Gaussians label distribution learning","volume":"28","author":"Ling","year":"2019","journal-title":"IEEE Trans. Image. Process."},{"key":"10.1016\/j.patcog.2024.111172_b19","doi-asserted-by":"crossref","first-page":"1974","DOI":"10.1109\/TPAMI.2020.3029585","article-title":"Head pose estimation based on multivariate label distribution","volume":"44","author":"Geng","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.patcog.2024.111172_b20","first-page":"39","article-title":"A maximum entropy approach to natural language processing","volume":"22","author":"Berger","year":"1996","journal-title":"Comput. Linguist."},{"year":"2006","series-title":"Numerical optimization","author":"Wright","key":"10.1016\/j.patcog.2024.111172_b21"},{"key":"10.1016\/j.patcog.2024.111172_b22","unstructured":"X. Yang, X. Geng, D. Zhou, Sparsity Conditional Energy Label Distribution Learning for Age Estimation, in: Proc. of the Int. Joint Conf. on Artificial Intelligence, IJCAI, 2016, pp. 2259\u20132265."},{"key":"10.1016\/j.patcog.2024.111172_b23","article-title":"Label distribution learning forests","volume":"30","author":"Shen","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst.(NIPS)"},{"key":"10.1016\/j.patcog.2024.111172_b24","doi-asserted-by":"crossref","unstructured":"P. Kontschieder, M. Fiterau, A. Criminisi, S.R. Bulo, Deep neural decision forests, in: Proc. of the IEEE Int. Conf. on Computer Vision, 2015, pp. 1467\u20131475.","DOI":"10.1109\/ICCV.2015.172"},{"issue":"2","key":"10.1016\/j.patcog.2024.111172_b25","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1109\/TPAMI.2019.2937294","article-title":"Deep differentiable random forests for age estimation","volume":"43","author":"Shen","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111172_b26","doi-asserted-by":"crossref","unstructured":"P. Zhao, Z.-H. Zhou, Label distribution learning by optimal transport, in: Proc. of the AAAI Conf. on Artificial Intelligence, Vol. 32, 2018.","DOI":"10.1609\/aaai.v32i1.11609"},{"key":"10.1016\/j.patcog.2024.111172_b27","doi-asserted-by":"crossref","unstructured":"K. Wang, X. Geng, Discrete Binary Coding based Label Distribution Learning, in: Proc. of the Int. Joint Conf. on Artificial Intelligence, IJCAI, 2019, pp. 3733\u20133739.","DOI":"10.24963\/ijcai.2019\/518"},{"key":"10.1016\/j.patcog.2024.111172_b28","doi-asserted-by":"crossref","unstructured":"S. Xu, L. Shang, F. Shen, Latent Semantics Encoding for Label Distribution Learning., in: Proc. of the Int. Joint Conf. on Artificial Intelligence, IJCAI, 2019, pp. 3982\u20133988.","DOI":"10.24963\/ijcai.2019\/553"},{"issue":"5","key":"10.1016\/j.patcog.2024.111172_b29","first-page":"2057","article-title":"Leveraging implicit relative labeling-importance information for effective multi-label learning","volume":"33","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111172_b30","doi-asserted-by":"crossref","unstructured":"R. Shao, N. Xu, X. Geng, Multi-label Learning with Label Enhancement, in: Proc. of the IEEE Int. Conf. on Data Mining, ICDM, 2018, pp. 437\u2013446.","DOI":"10.1109\/ICDM.2018.00059"},{"key":"10.1016\/j.patcog.2024.111172_b31","doi-asserted-by":"crossref","first-page":"1632","DOI":"10.1109\/TKDE.2019.2947040","article-title":"Label enhancement for label distribution learning","volume":"33","author":"Xu","year":"2018","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111172_b32","first-page":"482","article-title":"Generalized label enhancement with sample correlations","volume":"35","author":"Zheng","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111172_b33","unstructured":"N. Xu, J. Shu, Y. Liu, X. Geng, Variational Label Enhancement, in: Proc. Int. Conf. Mach. Learn., 2020, pp. 10597\u201310606."},{"key":"10.1016\/j.patcog.2024.111172_b34","doi-asserted-by":"crossref","unstructured":"A. Gretton, O. Bousquet, A. Smola, B. Sch\u00f6lkopf, Measuring Statistical Dependence with Hilbert-Schmidt Norms, in: Proc. of the Int. Conf. on Algorithmic Learning Theory, 2005.","DOI":"10.1007\/11564089_7"},{"issue":"3","key":"10.1016\/j.patcog.2024.111172_b35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1839490.1839495","article-title":"Multilabel dimensionality reduction via dependence maximization","volume":"4","author":"Zhang","year":"2010","journal-title":"ACM Trans. Knowl. Discov. Data."},{"key":"10.1016\/j.patcog.2024.111172_b36","doi-asserted-by":"crossref","unstructured":"W.-X. Bao, J.-Y. Hang, M.-L. Zhang, Partial label dimensionality reduction via confidence-based dependence maximization, in: Proc. of the 27th ACM SIGKDD Conf. on Knowl. Disco. Data. Min., KDD, 2021, pp. 46\u201354.","DOI":"10.1145\/3447548.3467313"},{"key":"10.1016\/j.patcog.2024.111172_b37","doi-asserted-by":"crossref","unstructured":"J. Yang, M. Sun, X. Sun, Learning visual sentiment distributions via augmented conditional probability neural network, in: Proc. of the AAAI Conf. on Artificial Intelligence, no. 1, 2017.","DOI":"10.1609\/aaai.v31i1.10485"},{"key":"10.1016\/j.patcog.2024.111172_b38","series-title":"Proc. of the Third IEEE Int. Conf. on Automatic Face and Gesture Recognition","first-page":"200","article-title":"Coding facial expressions with gabor wavelets","author":"Lyons","year":"1998"},{"key":"10.1016\/j.patcog.2024.111172_b39","series-title":"Proc. of the 7th Int. Conf. on Automatic Face and Gesture Recognition","first-page":"211","article-title":"A 3D facial expression database for facial behavior research","author":"Yin","year":"2006"},{"issue":"12","key":"10.1016\/j.patcog.2024.111172_b40","doi-asserted-by":"crossref","first-page":"2037","DOI":"10.1109\/TPAMI.2006.244","article-title":"Face description with local binary patterns: Application to face recognition","volume":"28","author":"Ahonen","year":"2006","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111172_b41","doi-asserted-by":"crossref","unstructured":"X. Geng, L. Luo, Multilabel ranking with inconsistent rankers, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., CVPR, 2014, pp. 3742\u20133747.","DOI":"10.1109\/CVPR.2014.478"},{"key":"10.1016\/j.patcog.2024.111172_b42","doi-asserted-by":"crossref","unstructured":"P. Hou, X. Geng, M.-L. Zhang, Multi-label manifold learning, in: Proc. of the AAAI Conf. on Artificial Intelligence, Vol. 30, 2016.","DOI":"10.1609\/aaai.v30i1.10258"},{"issue":"1","key":"10.1016\/j.patcog.2024.111172_b43","first-page":"482","article-title":"Generalized label enhancement with sample correlations","volume":"35","author":"Zheng","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111172_b44","doi-asserted-by":"crossref","unstructured":"Q.-W. Zhang, Y. Zhong, M.-L. Zhang, Feature-induced labeling information enrichment for multi-label learning, in: Proc. of the AAAI Conf. on Artificial Intelligence, Vol. 32, 2018.","DOI":"10.1609\/aaai.v32i1.11656"},{"issue":"5","key":"10.1016\/j.patcog.2024.111172_b45","doi-asserted-by":"crossref","first-page":"7204","DOI":"10.1109\/TNNLS.2022.3214610","article-title":"Sequential label enhancement","volume":"35","author":"Gao","year":"2024","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.patcog.2024.111172_b46","article-title":"A novel label enhancement algorithm based on manifold learning","volume":"135","author":"Tan","year":"2023","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111172_b47","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2024.111172_b48","doi-asserted-by":"crossref","unstructured":"E.J. Cand\u00e8s, X. Li, Y. Ma, J. Wright, Robust principal component analysis?, J. ACM 58 (3).","DOI":"10.1145\/1970392.1970395"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009233?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009233?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T09:00:01Z","timestamp":1733562001000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324009233"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":48,"alternative-id":["S0031320324009233"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111172","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Progressive label enhancement","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111172","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111172"}}