{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,8]],"date-time":"2024-12-08T05:07:43Z","timestamp":1733634463411,"version":"3.30.1"},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T00:00:00Z","timestamp":1743465600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T00:00:00Z","timestamp":1731628800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","award":["RGPIN-2020-04633","RGPIN-2017-06115"],"id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,4]]},"DOI":"10.1016\/j.patcog.2024.111169","type":"journal-article","created":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T11:12:01Z","timestamp":1731582721000},"page":"111169","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Learning data association for multi-object tracking using only coordinates"],"prefix":"10.1016","volume":"160","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-7428-737X","authenticated-orcid":false,"given":"Mehdi","family":"Miah","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3227-5060","authenticated-orcid":false,"given":"Guillaume-Alexandre","family":"Bilodeau","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0218-7932","authenticated-orcid":false,"given":"Nicolas","family":"Saunier","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2024.111169_b1","series-title":"2017 IEEE International Conference on Image Processing","first-page":"3645","article-title":"Simple online and realtime tracking with a deep association metric","author":"Wojke","year":"2017"},{"key":"10.1016\/j.patcog.2024.111169_b2","doi-asserted-by":"crossref","unstructured":"P. Bergmann, T. Meinhardt, L. Leal-Taixe, Tracking without bells and whistles, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 941\u2013951.","DOI":"10.1109\/ICCV.2019.00103"},{"key":"10.1016\/j.patcog.2024.111169_b3","doi-asserted-by":"crossref","unstructured":"J. Pang, L. Qiu, X. Li, H. Chen, Q. Li, T. Darrell, F. Yu, Quasi-dense similarity learning for multiple object tracking, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 164\u2013173.","DOI":"10.1109\/CVPR46437.2021.00023"},{"key":"10.1016\/j.patcog.2024.111169_b4","series-title":"2016 IEEE International Conference on Image Processing","first-page":"3464","article-title":"Simple online and realtime tracking","author":"Bewley","year":"2016"},{"key":"10.1016\/j.patcog.2024.111169_b5","doi-asserted-by":"crossref","unstructured":"G. Wang, R. Gu, Z. Liu, W. Hu, M. Song, J.-N. Hwang, Track without appearance: Learn box and tracklet embedding with local and global motion patterns for vehicle tracking, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 9876\u20139886.","DOI":"10.1109\/ICCV48922.2021.00973"},{"key":"10.1016\/j.patcog.2024.111169_b6","doi-asserted-by":"crossref","unstructured":"F. Saleh, S. Aliakbarian, H. Rezatofighi, M. Salzmann, S. Gould, Probabilistic tracklet scoring and inpainting for multiple object tracking, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14329\u201314339.","DOI":"10.1109\/CVPR46437.2021.01410"},{"key":"10.1016\/j.patcog.2024.111169_b7","doi-asserted-by":"crossref","unstructured":"P. Tokmakov, J. Li, W. Burgard, A. Gaidon, Learning to track with object permanence, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 10860\u201310869.","DOI":"10.1109\/ICCV48922.2021.01068"},{"key":"10.1016\/j.patcog.2024.111169_b8","series-title":"European Conference on Computer Vision","first-page":"1","article-title":"Bytetrack: Multi-object tracking by associating every detection box","author":"Zhang","year":"2022"},{"key":"10.1016\/j.patcog.2024.111169_b9","doi-asserted-by":"crossref","unstructured":"F. Yang, S. Odashima, S. Masui, S. Jiang, Hard to track objects with irregular motions and similar appearances? make it easier by buffering the matching space, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 4799\u20134808.","DOI":"10.1109\/WACV56688.2023.00478"},{"key":"10.1016\/j.patcog.2024.111169_b10","series-title":"2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance","first-page":"1","article-title":"High-speed tracking-by-detection without using image information","author":"Bochinski","year":"2017"},{"year":"2022","series-title":"Bot-SORT: Robust associations multi-pedestrian tracking","author":"Aharon","key":"10.1016\/j.patcog.2024.111169_b11"},{"year":"2023","series-title":"SparseTrack: Multi-object tracking by performing scene decomposition based on pseudo-depth","author":"Liu","key":"10.1016\/j.patcog.2024.111169_b12"},{"key":"10.1016\/j.patcog.2024.111169_b13","doi-asserted-by":"crossref","unstructured":"K. Yi, K. Luo, X. Luo, J. Huang, H. Wu, R. Hu, W. Hao, UCMCTrack: Multi-Object Tracking with Uniform Camera Motion Compensation, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2024.","DOI":"10.1609\/aaai.v38i7.28493"},{"key":"10.1016\/j.patcog.2024.111169_b14","doi-asserted-by":"crossref","unstructured":"P. Sun, J. Cao, Y. Jiang, Z. Yuan, S. Bai, K. Kitani, P. Luo, Dancetrack: Multi-object tracking in uniform appearance and diverse motion, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 20993\u201321002.","DOI":"10.1109\/CVPR52688.2022.02032"},{"year":"2023","series-title":"MotionTrack: Learning motion predictor for multiple object tracking","author":"Xiao","key":"10.1016\/j.patcog.2024.111169_b15"},{"key":"10.1016\/j.patcog.2024.111169_b16","article-title":"The graph neural network model","author":"Scarselli","year":"2009","journal-title":"Trans. Neural Netw."},{"key":"10.1016\/j.patcog.2024.111169_b17","doi-asserted-by":"crossref","unstructured":"G. Bras\u00f3, L. Leal-Taix\u00e9, Learning a neural solver for multiple object tracking, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6247\u20136257.","DOI":"10.1109\/CVPR42600.2020.00628"},{"key":"10.1016\/j.patcog.2024.111169_b18","doi-asserted-by":"crossref","unstructured":"O. Cetintas, G. Bras\u00f3, L. Leal-Taix\u00e9, Unifying short and long-term tracking with graph hierarchies, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22877\u201322887.","DOI":"10.1109\/CVPR52729.2023.02191"},{"key":"10.1016\/j.patcog.2024.111169_b19","doi-asserted-by":"crossref","unstructured":"Y. Liu, Q. Yan, A. Alahi, Social nce: Contrastive learning of socially-aware motion representations, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 15118\u201315129.","DOI":"10.1109\/ICCV48922.2021.01484"},{"year":"2017","series-title":"In defense of the triplet loss for person re-identification","author":"Hermans","key":"10.1016\/j.patcog.2024.111169_b20"},{"key":"10.1016\/j.patcog.2024.111169_b21","series-title":"Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics","first-page":"297","article-title":"Noise-contrastive estimation: A new estimation principle for unnormalized statistical models","author":"Gutmann","year":"2010"},{"key":"10.1016\/j.patcog.2024.111169_b22","series-title":"International Conference on Machine Learning","first-page":"1597","article-title":"A simple framework for contrastive learning of visual representations","author":"Chen","year":"2020"},{"key":"10.1016\/j.patcog.2024.111169_b23","first-page":"21271","article-title":"Bootstrap your own latent-a new approach to self-supervised learning","volume":"33","author":"Grill","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2021","series-title":"Semi-TCL: Semi-supervised track contrastive representation learning","author":"Li","key":"10.1016\/j.patcog.2024.111169_b24"},{"key":"10.1016\/j.patcog.2024.111169_b25","unstructured":"S. Appalaraju, Y. Zhu, Y. Xie, I. Feh\u00e9rv\u00e1ri, Towards Good Practices in Self-supervised Representation Learning, in: NeurIPS Workshops, 2020."},{"issue":"1","key":"10.1016\/j.patcog.2024.111169_b26","first-page":"104","article-title":"Deep affinity network for multiple object tracking","volume":"43","author":"Sun","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111169_b27","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2024.111169_b28","unstructured":"A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, in: International Conference on Learning Representations, 2021."},{"year":"2021","series-title":"TransTrack: Multiple object tracking with transformer","author":"Sun","key":"10.1016\/j.patcog.2024.111169_b29"},{"key":"10.1016\/j.patcog.2024.111169_b30","doi-asserted-by":"crossref","unstructured":"T. Meinhardt, A. Kirillov, L. Leal-Taixe, C. Feichtenhofer, Trackformer: Multi-object tracking with transformers, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8844\u20138854.","DOI":"10.1109\/CVPR52688.2022.00864"},{"key":"10.1016\/j.patcog.2024.111169_b31","series-title":"European Conference on Computer Vision","first-page":"659","article-title":"Motr: End-to-end multiple-object tracking with transformer","author":"Zeng","year":"2022"},{"key":"10.1016\/j.patcog.2024.111169_b32","article-title":"Looking beyond two frames: End-to-end multi-object tracking using spatial and temporal transformers","author":"Zhu","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111169_b33","series-title":"2020 25th International Conference on Pattern Recognition","first-page":"10335","article-title":"Transformer networks for trajectory forecasting","author":"Giuliari","year":"2021"},{"key":"10.1016\/j.patcog.2024.111169_b34","unstructured":"A. Milan, L. Leal-Taixe, I. Reid, S. Roth, K. Schindler, MOT16: A Benchmark for Multi-Object Tracking, arXiv preprint arXiv:1603.00831."},{"key":"10.1016\/j.patcog.2024.111169_b35","series-title":"2012 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3354","article-title":"Are we ready for autonomous driving? the kitti vision benchmark suite","author":"Geiger","year":"2012"},{"key":"10.1016\/j.patcog.2024.111169_b36","series-title":"European Conference on Computer Vision","first-page":"474","article-title":"Tracking objects as points","author":"Zhou","year":"2020"},{"key":"10.1016\/j.patcog.2024.111169_b37","article-title":"HOTA: A higher order metric for evaluating multi-object tracking","author":"Luiten","year":"2020","journal-title":"Int. J. Comput. Vis. (IJCV)"},{"key":"10.1016\/j.patcog.2024.111169_b38","series-title":"Multimodal Technologies for Perception of Humans","article-title":"The CLEAR 2006 evaluation","author":"Stiefelhagen","year":"2007"},{"key":"10.1016\/j.patcog.2024.111169_b39","series-title":"European Conference on Computer Vision","first-page":"17","article-title":"Performance measures and a data set for multi-target, multi-camera tracking","author":"Ristani","year":"2016"},{"year":"2021","series-title":"YOLOX: Exceeding YOLO series in 2021","author":"Ge","key":"10.1016\/j.patcog.2024.111169_b40"},{"key":"10.1016\/j.patcog.2024.111169_b41","doi-asserted-by":"crossref","unstructured":"J. Cao, J. Pang, X. Weng, R. Khirodkar, K. Kitani, Observation-centric sort: Rethinking sort for robust multi-object tracking, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 9686\u20139696.","DOI":"10.1109\/CVPR52729.2023.00934"},{"key":"10.1016\/j.patcog.2024.111169_b42","series-title":"International Conference on Machine Learning","first-page":"21506","article-title":"Object permanence emerges in a random walk along memory","author":"Tokmakov","year":"2022"},{"key":"10.1016\/j.patcog.2024.111169_b43","doi-asserted-by":"crossref","unstructured":"T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Doll\u00e1r, Focal loss for dense object detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2980\u20132988.","DOI":"10.1109\/ICCV.2017.324"},{"key":"10.1016\/j.patcog.2024.111169_b44","doi-asserted-by":"crossref","unstructured":"Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, D. Ren, Distance-IoU loss: Faster and better learning for bounding box regression, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 12993\u201313000.","DOI":"10.1609\/aaai.v34i07.6999"},{"key":"10.1016\/j.patcog.2024.111169_b45","doi-asserted-by":"crossref","unstructured":"H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese, Generalized intersection over union: A metric and a loss for bounding box regression, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 658\u2013666.","DOI":"10.1109\/CVPR.2019.00075"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009208?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324009208?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,7]],"date-time":"2024-12-07T08:59:51Z","timestamp":1733561991000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324009208"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,4]]},"references-count":45,"alternative-id":["S0031320324009208"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111169","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Learning data association for multi-object tracking using only coordinates","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111169","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"111169"}}