{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:15:55Z","timestamp":1740111355082,"version":"3.37.3"},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["YJ202245"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62376230","62372315","62306196"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100012542","name":"Sichuan Province Science and Technology Support Program","doi-asserted-by":"publisher","award":["2024NSFTD0049","2024YFHZ0089","2024ZDZX0004","2024YFHZ0144","2023YFQ0020","2024NSFSC0443"],"id":[{"id":"10.13039\/100012542","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,3]]},"DOI":"10.1016\/j.patcog.2024.111115","type":"journal-article","created":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T16:38:09Z","timestamp":1730479089000},"page":"111115","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["GBMOD: A granular-ball mean-shift outlier detector"],"prefix":"10.1016","volume":"159","author":[{"given":"Shitong","family":"Cheng","sequence":"first","affiliation":[]},{"given":"Xinyu","family":"Su","sequence":"additional","affiliation":[]},{"given":"Baiyang","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Hongmei","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Dezhong","family":"Peng","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0002-2023-2004","authenticated-orcid":false,"given":"Zhong","family":"Yuan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.patcog.2024.111115_b1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3381028","article-title":"Outlier detection: Methods, models, and classification","volume":"53","author":"Boukerche","year":"2020","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.patcog.2024.111115_b2","first-page":"226","article-title":"A density-based algorithm for discovering clusters in large spatial databases with noise","volume":"vol. 96","author":"Ester","year":"1996"},{"issue":"1\u20132","key":"10.1016\/j.patcog.2024.111115_b3","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.cose.2008.08.003","article-title":"Anomaly-based network intrusion detection: Techniques, systems and challenges","volume":"28","author":"Garcia-Teodoro","year":"2009","journal-title":"Comput. Secur."},{"key":"10.1016\/j.patcog.2024.111115_b4","series-title":"Credit Scoring and Credit Control VII","first-page":"235","article-title":"Unsupervised profiling methods for fraud detection","author":"Bolton","year":"2001"},{"key":"10.1016\/j.patcog.2024.111115_b5","series-title":"2018 IEEE International Conference on Data Mining","first-page":"527","article-title":"Semi-supervised anomaly detection with an application to water analytics","volume":"vol. 2018","author":"Vercruyssen","year":"2018"},{"issue":"1","key":"10.1016\/j.patcog.2024.111115_b6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1814539.1814550","article-title":"MEDiSN: Medical emergency detection in sensor networks","volume":"10","author":"Ko","year":"2010","journal-title":"ACM Trans. Embed. Comput. Syst. (TECS)"},{"key":"10.1016\/j.patcog.2024.111115_b7","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1023\/B:AIRE.0000045502.10941.a9","article-title":"A survey of outlier detection methodologies","volume":"22","author":"Hodge","year":"2004","journal-title":"Artif. Intell. Rev."},{"issue":"1","key":"10.1016\/j.patcog.2024.111115_b8","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","article-title":"Nearest neighbor pattern classification","volume":"13","author":"Cover","year":"1967","journal-title":"IEEE Trans. Inform. Theory"},{"key":"10.1016\/j.patcog.2024.111115_b9","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.ins.2019.01.010","article-title":"Granular ball computing classifiers for efficient, scalable and robust learning","volume":"483","author":"Xia","year":"2019","journal-title":"Inform. Sci."},{"issue":"9","key":"10.1016\/j.patcog.2024.111115_b10","doi-asserted-by":"crossref","first-page":"9743","DOI":"10.1109\/TKDE.2023.3249475","article-title":"An efficient spectral clustering algorithm based on granular-ball","volume":"35","author":"Xie","year":"2023","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"3","key":"10.1016\/j.patcog.2024.111115_b11","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.1109\/TKDE.2020.2997039","article-title":"GBNRS: A novel rough set algorithm for fast adaptive attribute reduction in classification","volume":"34","author":"Xia","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111115_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107326","article-title":"Granular ball guided selector for attribute reduction","volume":"229","author":"Chen","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.patcog.2024.111115_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.121016","article-title":"Detecting anomalies with granular-ball fuzzy rough sets","author":"Su","year":"2024","journal-title":"Inform. Sci."},{"key":"10.1016\/j.patcog.2024.111115_b14","first-page":"2231","article-title":"Real time object tracking using different mean shift techniques\u2013a review","author":"Snekha","year":"2013","journal-title":"Int. J. Soft Comput. Eng. (IJSCE) ISSN"},{"issue":"2","key":"10.1016\/j.patcog.2024.111115_b15","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1109\/TKDE.2010.232","article-title":"Agglomerative mean-shift clustering","volume":"24","author":"Yuan","year":"2010","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111115_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.107874","article-title":"Mean-shift outlier detection and filtering","volume":"115","author":"Yang","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111115_b17","doi-asserted-by":"crossref","unstructured":"D. Cheng, Y. Li, S. Xia, G. Wang, J. Huang, S. Zhang, A fast granular-ball-based density peaks clustering algorithm for large-scale data, IEEE Trans. Neural Netw. Learn. Syst. http:\/\/dx.doi.org\/10.1109\/TNNLS.2023.3300916.","DOI":"10.1109\/TNNLS.2023.3300916"},{"key":"10.1016\/j.patcog.2024.111115_b18","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.ins.2019.01.010","article-title":"Granular ball computing classifiers for efficient, scalable and robust learning","volume":"483","author":"Xia","year":"2019","journal-title":"Inform. Sci."},{"issue":"4","key":"10.1016\/j.patcog.2024.111115_b19","doi-asserted-by":"crossref","first-page":"2144","DOI":"10.1109\/TNNLS.2021.3105984","article-title":"Granular ball sampling for noisy label classification or imbalanced classification","volume":"34","author":"Xia","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.patcog.2024.111115_b20","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1016\/j.ins.2022.08.066","article-title":"VPGB: A granular-ball based model for attribute reduction and classification with label noise","volume":"611","author":"Peng","year":"2022","journal-title":"Inform. Sci."},{"key":"10.1016\/j.patcog.2024.111115_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2023.119071","article-title":"Extended rough sets model based on fuzzy granular ball and its attribute reduction","volume":"640","author":"Ji","year":"2023","journal-title":"Inform. Sci."},{"key":"10.1016\/j.patcog.2024.111115_b22","doi-asserted-by":"crossref","unstructured":"S. Xia, C. Wang, G. Wang, X. Gao, W. Ding, J. Yu, Y. Zhai, Z. Chen, GBRS: A Unified Granular-Ball Learning Model of Pawlak Rough Set and Neighborhood Rough Set, IEEE Trans. Neural Netw. Learn. Syst. http:\/\/dx.doi.org\/10.1109\/TNNLS.2023.3325199.","DOI":"10.1109\/TNNLS.2023.3325199"},{"key":"10.1016\/j.patcog.2024.111115_b23","article-title":"A fast granular-ball-based density peaks clustering algorithm for large-scale data","author":"Cheng","year":"2023","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.patcog.2024.111115_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2024.123313","article-title":"Granular-ball computing-based manifold clustering algorithms for ultra-scalable data","volume":"247","author":"Cheng","year":"2024","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.patcog.2024.111115_b25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3439950","article-title":"Deep learning for anomaly detection: A review","volume":"54","author":"Pang","year":"2021","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"10.1016\/j.patcog.2024.111115_b26","series-title":"European Conference on Principles of Data Mining and Knowledge Discovery","first-page":"15","article-title":"Fast outlier detection in high dimensional spaces","author":"Angiulli","year":"2002"},{"issue":"2","key":"10.1016\/j.patcog.2024.111115_b27","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1145\/335191.335388","article-title":"LOF: identifying density-based local outliers","volume":"29","author":"Breunig","year":"2000","journal-title":"Acm Sigmod Rec."},{"key":"10.1016\/j.patcog.2024.111115_b28","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.neucom.2017.02.039","article-title":"A local density-based approach for outlier detection","volume":"241","author":"Tang","year":"2017","journal-title":"Neurocomputing"},{"issue":"12","key":"10.1016\/j.patcog.2024.111115_b29","doi-asserted-by":"crossref","first-page":"2451","DOI":"10.1109\/TSMC.2017.2718220","article-title":"Efficient outlier detection for high-dimensional data","volume":"48","author":"Liu","year":"2017","journal-title":"IEEE Trans. Syst. Man Cybern.: Syst."},{"key":"10.1016\/j.patcog.2024.111115_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117988","article-title":"Robust outlier detection based on the changing rate of directed density ratio","volume":"207","author":"Li","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.patcog.2024.111115_b31","series-title":"2014 IEEE International Conference on Data Mining Workshop","first-page":"698","article-title":"Efficient anomaly detection by isolation using nearest neighbour ensemble","author":"Bandaragoda","year":"2014"},{"issue":"1","key":"10.1016\/j.patcog.2024.111115_b32","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2133360.2133363","article-title":"Isolation-based anomaly detection","volume":"6","author":"Liu","year":"2012","journal-title":"ACM Trans. Knowl. Discov. Data (TKDD)"},{"key":"10.1016\/j.patcog.2024.111115_b33","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1007\/s13042-013-0202-4","article-title":"A simple and effective outlier detection algorithm for categorical data","volume":"5","author":"Zhao","year":"2014","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.patcog.2024.111115_b34","series-title":"2020 IEEE International Conference on Data Mining","first-page":"1118","article-title":"COPOD: copula-based outlier detection","author":"Li","year":"2020"},{"issue":"12","key":"10.1016\/j.patcog.2024.111115_b35","doi-asserted-by":"crossref","first-page":"12181","DOI":"10.1109\/TKDE.2022.3159580","article-title":"Ecod: Unsupervised outlier detection using empirical cumulative distribution functions","volume":"35","author":"Li","year":"2022","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111115_b36","series-title":"2019 IEEE International Conference on Data Mining","first-page":"1408","article-title":"Mix: A joint learning framework for detecting both clustered and scattered outliers in mixed-type data","author":"Xu","year":"2019"},{"issue":"5","key":"10.1016\/j.patcog.2024.111115_b37","doi-asserted-by":"crossref","first-page":"2302","DOI":"10.1109\/TCYB.2018.2876615","article-title":"Outlier detection using structural scores in a high-dimensional space","volume":"50","author":"Li","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.patcog.2024.111115_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2023.109995","article-title":"Anomaly detection based on weighted fuzzy-rough density","volume":"134","author":"Yuan","year":"2023","journal-title":"Appl. Soft Comput."},{"issue":"12","key":"10.1016\/j.patcog.2024.111115_b39","doi-asserted-by":"crossref","first-page":"12591","DOI":"10.1109\/TKDE.2023.3270293","article-title":"Deep isolation forest for anomaly detection","volume":"35","author":"Xu","year":"2023","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2024.111115_b40","series-title":"International Conference on Machine Learning","first-page":"4393","article-title":"Deep one-class classification","author":"Ruff","year":"2018"},{"key":"10.1016\/j.patcog.2024.111115_b41","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.inffus.2023.02.007","article-title":"MFGAD: Multi-fuzzy granules anomaly detection","volume":"95","author":"Yuan","year":"2023","journal-title":"Inf. Fusion"},{"issue":"1","key":"10.1016\/j.patcog.2024.111115_b42","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1214\/aoms\/1177731944","article-title":"A comparison of alternative tests of significance for the problem of m rankings","volume":"11","author":"Friedman","year":"1940","journal-title":"Ann. Math. Stat."},{"key":"10.1016\/j.patcog.2024.111115_b43","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324008665?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324008665?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,4]],"date-time":"2024-12-04T14:22:08Z","timestamp":1733322128000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324008665"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,3]]},"references-count":43,"alternative-id":["S0031320324008665"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111115","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"GBMOD: A granular-ball mean-shift outlier detector","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111115","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111115"}}