{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:15:53Z","timestamp":1740111353570,"version":"3.37.3"},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61672102"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012165","name":"Key Technologies Research and Development Program","doi-asserted-by":"publisher","award":["2020YFC1523303"],"id":[{"id":"10.13039\/501100012165","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.patcog.2024.111057","type":"journal-article","created":{"date-parts":[[2024,9,28]],"date-time":"2024-09-28T22:47:27Z","timestamp":1727563647000},"page":"111057","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Frequency domain task-adaptive network for restoring images with combined degradations"],"prefix":"10.1016","volume":"158","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-8987-3956","authenticated-orcid":false,"given":"Hu","family":"Gao","sequence":"first","affiliation":[]},{"given":"Bowen","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Ying","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jingfan","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Depeng","family":"Dang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.patcog.2024.111057_b1","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1109\/34.56205","article-title":"Scale-space and edge detection using anisotropic diffusion","volume":"12","author":"Perona","year":"2002","journal-title":"Trans. Pattern Anal. Mach. Intell."},{"issue":"7","key":"10.1016\/j.patcog.2024.111057_b2","doi-asserted-by":"crossref","first-page":"1838","DOI":"10.1109\/TIP.2011.2108306","article-title":"Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization","volume":"20","author":"Dong","year":"2011","journal-title":"Trans. Image Process."},{"key":"10.1016\/j.patcog.2024.111057_b3","doi-asserted-by":"crossref","unstructured":"S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, Restormer: Efficient Transformer for High-Resolution Image Restoration, in: CVPR, 2022.","DOI":"10.1109\/CVPR52688.2022.00564"},{"key":"10.1016\/j.patcog.2024.111057_b4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TPAMI.2023.3290949","article-title":"Image restoration via frequency selection","author":"Cui","year":"2023","journal-title":"Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.111057_b5","article-title":"PromptIR: Prompting for all-in-one blind image restoration","author":"Potlapalli","year":"2023","journal-title":"Adv. Neural Inf. Process. Syst. (NeurIPS)"},{"key":"10.1016\/j.patcog.2024.111057_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.110137","article-title":"Robust multi-scale weighting-based edge-smoothing filter for single image dehazing","volume":"149","author":"Yadav","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111057_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110291","article-title":"Dual residual attention network for image denoising","volume":"149","author":"Wu","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111057_b8","first-page":"1","article-title":"U2-former: Nested U-shaped transformer for image restoration via multi-view contrastive learning","author":"Feng","year":"2023","journal-title":"Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.patcog.2024.111057_b9","doi-asserted-by":"crossref","unstructured":"L. Chen, X. Chu, X. Zhang, J. Sun, Simple Baselines for Image Restoration, in: ECCV, 2022.","DOI":"10.1007\/978-3-031-20071-7_2"},{"key":"10.1016\/j.patcog.2024.111057_b10","doi-asserted-by":"crossref","unstructured":"Y. Cui, Y. Tao, Z. Bing, W. Ren, X. Gao, X. Cao, K. Huang, A. Knoll, Selective Frequency Network for Image Restoration, in: ICLR, 2023.","DOI":"10.1109\/ICCV51070.2023.01195"},{"key":"10.1016\/j.patcog.2024.111057_b11","first-page":"1","article-title":"Frequency-oriented efficient transformer for all-in-one weather-degraded image restoration","author":"Gao","year":"2023","journal-title":"Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.patcog.2024.111057_b12","series-title":"ECCV","first-page":"447","article-title":"Tape: Task-agnostic prior embedding for image restoration","author":"Liu","year":"2022"},{"key":"10.1016\/j.patcog.2024.111057_b13","doi-asserted-by":"crossref","unstructured":"J. Zhang, J. Huang, M. Yao, Z. Yang, H. Yu, M. Zhou, F. Zhao, Ingredient-Oriented Multi-Degradation Learning for Image Restoration, in: CVPR, 2023, pp. 5825\u20135835.","DOI":"10.1109\/CVPR52729.2023.00564"},{"key":"10.1016\/j.patcog.2024.111057_b14","doi-asserted-by":"crossref","unstructured":"J. Zhou, C. Leong, M. Lin, W. Liao, C. Li, Task Adaptive Network for Image Restoration with Combined Degradation Factors, in: WACVW, 2022, pp. 1\u20138.","DOI":"10.1109\/WACVW54805.2022.00005"},{"key":"10.1016\/j.patcog.2024.111057_b15","doi-asserted-by":"crossref","unstructured":"M. Suganuma, X. Liu, T. Okatani, Attention-based Adaptive Selection of Operations for Image Restoration in the Presence of Unknown Combined Distortions, in: CVPR, 2019.","DOI":"10.1109\/CVPR.2019.00925"},{"key":"10.1016\/j.patcog.2024.111057_b16","doi-asserted-by":"crossref","unstructured":"X. Qin, Z. Wang, Y. Bai, X. Xie, H. Jia, FFA-Net: Feature fusion attention network for single image dehazing, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 11908\u201311915.","DOI":"10.1609\/aaai.v34i07.6865"},{"key":"10.1016\/j.patcog.2024.111057_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.110205","article-title":"From heavy rain removal to detail restoration: A faster and better network","volume":"148","author":"Wen","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111057_b18","doi-asserted-by":"crossref","unstructured":"X. Chen, H. Li, M. Li, J. Pan, Learning a Sparse Transformer Network for Effective Image Deraining, in: CVPR, CVPR, 2023, pp. 5896\u20135905.","DOI":"10.1109\/CVPR52729.2023.00571"},{"key":"10.1016\/j.patcog.2024.111057_b19","doi-asserted-by":"crossref","unstructured":"S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, L. Shao, Multi-Stage Progressive Image Restoration, in: CVPR, 2021.","DOI":"10.1109\/CVPR46437.2021.01458"},{"key":"10.1016\/j.patcog.2024.111057_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108909","article-title":"Joint operation and attention block search for lightweight image restoration","volume":"132","author":"Shen","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111057_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2023.110159","article-title":"DGD-cGAN: A dual generator for image dewatering and restoration","volume":"148","author":"Gonzalez-Sabbagh","year":"2024","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2024.111057_b22","article-title":"Learning enriched features for fast image restoration and enhancement","author":"Zamir","year":"2022","journal-title":"Trans. Pattern Anal. Mach. Intell. (TPAMI)"},{"key":"10.1016\/j.patcog.2024.111057_b23","doi-asserted-by":"crossref","unstructured":"J.M.J. Valanarasu, R. Yasarla, V.M. Patel, Transweather: Transformer-based restoration of images degraded by adverse weather conditions, in: CVPR, 2022, pp. 2353\u20132363.","DOI":"10.1109\/CVPR52688.2022.00239"},{"key":"10.1016\/j.patcog.2024.111057_b24","doi-asserted-by":"crossref","unstructured":"B. Li, X. Liu, P. Hu, Z. Wu, J. Lv, X. Peng, All-in-one image restoration for unknown corruption, in: CVPR, 2022, pp. 17452\u201317462.","DOI":"10.1109\/CVPR52688.2022.01693"},{"key":"10.1016\/j.patcog.2024.111057_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.111116","article-title":"RestorNet: An efficient network for multiple degradation image restoration","volume":"282","author":"Wang","year":"2023","journal-title":"Knowl.-Based Syst."},{"issue":"1","key":"10.1016\/j.patcog.2024.111057_b26","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1109\/TIP.2018.2867951","article-title":"Benchmarking single-image dehazing and beyond","volume":"28","author":"Li","year":"2018","journal-title":"Trans. Image Process."},{"key":"10.1016\/j.patcog.2024.111057_b27","doi-asserted-by":"crossref","unstructured":"W. Yang, R.T. Tan, J. Feng, J. Liu, Z. Guo, S. Yan, Deep Joint Rain Detection and Removal from a Single Image, in: CVPR, 2016, pp. 1685\u20131694.","DOI":"10.1109\/CVPR.2017.183"},{"key":"10.1016\/j.patcog.2024.111057_b28","doi-asserted-by":"crossref","first-page":"3943","DOI":"10.1109\/TCSVT.2019.2920407","article-title":"Image de-raining using a conditional generative adversarial network","volume":"30","author":"Zhang","year":"2017","journal-title":"Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.patcog.2024.111057_b29","series-title":"ICCV","first-page":"416","article-title":"A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics","volume":"Vol. 2","author":"Martin","year":"2001"},{"key":"10.1016\/j.patcog.2024.111057_b30","doi-asserted-by":"crossref","unstructured":"X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, J. Paisley, Removing Rain from Single Images via a Deep Detail Network, in: CVPR, 2017.","DOI":"10.1109\/CVPR.2017.186"},{"key":"10.1016\/j.patcog.2024.111057_b31","doi-asserted-by":"crossref","unstructured":"H. Zhang, V.M. Patel, Density-Aware Single Image De-raining Using a Multi-stream Dense Network, in: CVPR, 2018, pp. 695\u2013704.","DOI":"10.1109\/CVPR.2018.00079"},{"issue":"2","key":"10.1016\/j.patcog.2024.111057_b32","doi-asserted-by":"crossref","first-page":"1004","DOI":"10.1109\/TIP.2016.2631888","article-title":"Waterloo exploration database: New challenges for image quality assessment models","volume":"26","author":"Ma","year":"2016","journal-title":"Trans. Image Process."},{"key":"10.1016\/j.patcog.2024.111057_b33","series-title":"Kodak lossless true color image suite","first-page":"9","author":"Franzen","year":"1999"},{"key":"10.1016\/j.patcog.2024.111057_b34","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014","journal-title":"Comput. Sci."},{"year":"2016","series-title":"SGDR: Stochastic gradient descent with warm restarts","author":"Loshchilov","key":"10.1016\/j.patcog.2024.111057_b35"},{"key":"10.1016\/j.patcog.2024.111057_b36","doi-asserted-by":"crossref","unstructured":"C. Guo, Q. Yan, S. Anwar, R. Cong, W. Ren, C. Li, Image Dehazing Transformer with Transmission-Aware 3D Position Embedding, in: CVPR, 2022, pp. 5802\u20135810.","DOI":"10.1109\/CVPR52688.2022.00572"},{"key":"10.1016\/j.patcog.2024.111057_b37","doi-asserted-by":"crossref","unstructured":"K. Jiang, Z. Wang, P. Yi, C. Chen, B. Huang, Y. Luo, J. Ma, J. Jiang, Multi-Scale Progressive Fusion Network for Single Image Deraining, in: CVPR, 2020.","DOI":"10.1109\/CVPR42600.2020.00837"},{"issue":"4","key":"10.1016\/j.patcog.2024.111057_b38","first-page":"4826","article-title":"Lattice network for lightweight image restoration","volume":"45","author":"Luo","year":"2023","journal-title":"Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.patcog.2024.111057_b39","doi-asserted-by":"crossref","first-page":"1347","DOI":"10.1007\/s00530-023-01066-1","article-title":"A gated multi-hierarchical feature fusion network for recognizing steel plate surface defects","volume":"29","author":"Tao","year":"2023","journal-title":"Multimedia Syst."},{"key":"10.1016\/j.patcog.2024.111057_b40","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.neunet.2023.11.033","article-title":"Hierarchical attention network with progressive feature fusion for facial expression recognition","volume":"170","author":"Tao","year":"2024","journal-title":"Neural Netw."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324008082?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324008082?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,10]],"date-time":"2024-11-10T20:01:03Z","timestamp":1731268863000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324008082"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":40,"alternative-id":["S0031320324008082"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111057","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Frequency domain task-adaptive network for restoring images with combined degradations","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.111057","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"111057"}}