{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,21]],"date-time":"2025-04-21T13:26:34Z","timestamp":1745241994011,"version":"3.28.0"},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1016\/j.patcog.2024.110301","type":"journal-article","created":{"date-parts":[[2024,2,2]],"date-time":"2024-02-02T16:16:21Z","timestamp":1706890581000},"page":"110301","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Leveraging spatio-temporal features using graph neural networks for human activity recognition"],"prefix":"10.1016","volume":"150","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1111-9520","authenticated-orcid":false,"given":"M.S. Subodh","family":"Raj","sequence":"first","affiliation":[]},{"given":"Sudhish N.","family":"George","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9489-5161","authenticated-orcid":false,"given":"Kiran","family":"Raja","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.patcog.2024.110301_b1","doi-asserted-by":"crossref","first-page":"2259","DOI":"10.1007\/s10462-020-09904-8","article-title":"A survey on video-based human action recognition: recent updates, datasets, challenges, and applications","volume":"54","author":"Pareek","year":"2021","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.patcog.2024.110301_b2","doi-asserted-by":"crossref","first-page":"698","DOI":"10.1016\/j.procs.2019.08.100","article-title":"Human activity recognition: A survey","volume":"155","author":"Jobanputra","year":"2019","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.patcog.2024.110301_b3","series-title":"2020 25th International Conference on Pattern Recognition","first-page":"6035","article-title":"Subspace clustering for action recognition with covariance representations and temporal pruning","author":"Paoletti","year":"2021"},{"issue":"7","key":"10.1016\/j.patcog.2024.110301_b4","doi-asserted-by":"crossref","first-page":"1340","DOI":"10.1109\/TCYB.2014.2350774","article-title":"3-d human action recognition by shape analysis of motion trajectories on riemannian manifold","volume":"45","author":"Devanne","year":"2014","journal-title":"IEEE Trans. Cybern."},{"issue":"2","key":"10.1016\/j.patcog.2024.110301_b5","doi-asserted-by":"crossref","first-page":"174","DOI":"10.18178\/joig.6.2.174-180","article-title":"Motion trajectory for human action recognition using fourier temporal features of skeleton joints","volume":"6","author":"Kumar","year":"2018","journal-title":"J. Image Graph."},{"key":"10.1016\/j.patcog.2024.110301_b6","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2022.3183112","article-title":"Human action recognition from various data modalities: A review","author":"Sun","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.110301_b7","series-title":"2017 IEEE International Conference on Multimedia & Expo Workshops","first-page":"585","article-title":"Skeleton-based action recognition using LSTM and CNN","author":"Li","year":"2017"},{"issue":"2","key":"10.1016\/j.patcog.2024.110301_b8","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1007\/s41019-020-00123-3","article-title":"Deep-aligned convolutional neural network for skeleton-based action recognition and segmentation","volume":"5","author":"Hosseini","year":"2020","journal-title":"Data Sci. Eng."},{"key":"10.1016\/j.patcog.2024.110301_b9","doi-asserted-by":"crossref","unstructured":"P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, N. Zheng, View adaptive recurrent neural networks for high performance human action recognition from skeleton data, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2117\u20132126.","DOI":"10.1109\/ICCV.2017.233"},{"issue":"8","key":"10.1016\/j.patcog.2024.110301_b10","doi-asserted-by":"crossref","first-page":"1963","DOI":"10.1109\/TPAMI.2019.2896631","article-title":"View adaptive neural networks for high performance skeleton-based human action recognition","volume":"41","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.110301_b11","doi-asserted-by":"crossref","unstructured":"L. Wang, Y. Qiao, X. Tang, Action recognition with trajectory-pooled deep-convolutional descriptors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4305\u20134314.","DOI":"10.1109\/CVPR.2015.7299059"},{"issue":"2","key":"10.1016\/j.patcog.2024.110301_b12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3476514","article-title":"An l 1\/2 and graph regularized subspace clustering method for robust image segmentation","volume":"18","author":"Francis","year":"2022","journal-title":"ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)"},{"issue":"10","key":"10.1016\/j.patcog.2024.110301_b13","doi-asserted-by":"crossref","first-page":"12073","DOI":"10.1007\/s11042-017-4859-7","article-title":"Effective and efficient similarity searching in motion capture data","volume":"77","author":"Sedmidubsky","year":"2018","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.patcog.2024.110301_b14","article-title":"3D skeletal human action recognition using a CNN fusion model","volume":"2021","author":"Li","year":"2021","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.patcog.2024.110301_b15","series-title":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology","first-page":"22","article-title":"Human activity recognition from skeletal data using covariance descriptor and temporal subspace clustering","author":"Kumar","year":"2022"},{"key":"10.1016\/j.patcog.2024.110301_b16","series-title":"Colour and Visual Computing Symposium 2022, Gj\u00f8vik, Norway, September 8-9, 2022","article-title":"An efficient framework for the clustering of human activity data using kernelized robust covariance descriptors","volume":"vol. 3271","author":"Kumar","year":"2022"},{"key":"10.1016\/j.patcog.2024.110301_b17","series-title":"2014 IEEE International Conference on Image Processing","first-page":"2061","article-title":"Graph-based approach for motion capture data representation and analysis","author":"Kao","year":"2014"},{"key":"10.1016\/j.patcog.2024.110301_b18","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.cviu.2015.12.001","article-title":"Hierarchical transfer learning for online recognition of compound actions","volume":"144","author":"Bloom","year":"2016","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.patcog.2024.110301_b19","doi-asserted-by":"crossref","unstructured":"L. Seidenari, V. Varano, S. Berretti, A. Bimbo, P. Pala, Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013, pp. 479\u2013485.","DOI":"10.1109\/CVPRW.2013.77"},{"key":"10.1016\/j.patcog.2024.110301_b20","series-title":"2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","first-page":"20","article-title":"View invariant human action recognition using histograms of 3d joints","author":"Xia","year":"2012"},{"key":"10.1016\/j.patcog.2024.110301_b21","doi-asserted-by":"crossref","unstructured":"S. Fothergill, H. Mentis, P. Kohli, S. Nowozin, Instructing people for training gestural interactive systems, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2012, pp. 1737\u20131746.","DOI":"10.1145\/2207676.2208303"},{"key":"10.1016\/j.patcog.2024.110301_b22","series-title":"2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops","first-page":"9","article-title":"Action recognition based on a bag of 3d points","author":"Li","year":"2010"},{"year":"2007","series-title":"Documentation Mocap Database HDM05","author":"M\u00fcller","key":"10.1016\/j.patcog.2024.110301_b23"},{"issue":"1","key":"10.1016\/j.patcog.2024.110301_b24","doi-asserted-by":"crossref","first-page":"323","DOI":"10.3390\/s22010323","article-title":"Human activity recognition via hybrid deep learning based model","volume":"22","author":"Khan","year":"2022","journal-title":"Sensors"},{"issue":"12","key":"10.1016\/j.patcog.2024.110301_b25","doi-asserted-by":"crossref","first-page":"4095","DOI":"10.1007\/s00371-021-02283-3","article-title":"A multibranch CNN-BiLSTM model for human activity recognition using wearable sensor data","volume":"38","author":"Challa","year":"2022","journal-title":"Vis. Comput."},{"issue":"10","key":"10.1016\/j.patcog.2024.110301_b26","doi-asserted-by":"crossref","first-page":"4988","DOI":"10.3390\/app12104988","article-title":"A hybrid deep residual network for efficient transitional activity recognition based on wearable sensors","volume":"12","author":"Mekruksavanich","year":"2022","journal-title":"Appl. Sci."},{"key":"10.1016\/j.patcog.2024.110301_b27","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1016\/j.aej.2023.05.050","article-title":"Low-light aware framework for human activity recognition via optimized dual stream parallel network","volume":"74","author":"Hussain","year":"2023","journal-title":"Alex. Eng. J."},{"issue":"2","key":"10.1016\/j.patcog.2024.110301_b28","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1109\/MSP.2010.939739","article-title":"Subspace clustering","volume":"28","author":"Vidal","year":"2011","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.patcog.2024.110301_b29","doi-asserted-by":"crossref","unstructured":"C.-G. Li, R. Vidal, Structured sparse subspace clustering: A unified optimization framework, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 277\u2013286.","DOI":"10.1109\/CVPR.2015.7298624"},{"issue":"11","key":"10.1016\/j.patcog.2024.110301_b30","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1109\/TPAMI.2013.57","article-title":"Sparse subspace clustering: Algorithm, theory, and applications","volume":"35","author":"Elhamifar","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.patcog.2024.110301_b31","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","article-title":"Robust recovery of subspace structures by low-rank representation","volume":"35","author":"Liu","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2024.110301_b32","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.patrec.2013.08.006","article-title":"Low rank subspace clustering (LRSC)","volume":"43","author":"Vidal","year":"2014","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2024.110301_b33","series-title":"European Conference on Computer Vision","first-page":"347","article-title":"Robust and efficient subspace segmentation via least squares regression","author":"Lu","year":"2012"},{"key":"10.1016\/j.patcog.2024.110301_b34","series-title":"2016 23rd International Conference on Pattern Recognition","first-page":"408","article-title":"Kernelized covariance for action recognition","author":"Cavazza","year":"2016"},{"key":"10.1016\/j.patcog.2024.110301_b35","doi-asserted-by":"crossref","unstructured":"J. Butepage, M.J. Black, D. Kragic, H. Kjellstrom, Deep representation learning for human motion prediction and classification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6158\u20136166.","DOI":"10.1109\/CVPR.2017.173"},{"issue":"11","key":"10.1016\/j.patcog.2024.110301_b36","doi-asserted-by":"crossref","first-page":"2932","DOI":"10.1016\/j.sigpro.2013.05.002","article-title":"Human action recognition with salient trajectories","volume":"93","author":"Yi","year":"2013","journal-title":"Signal Process."},{"issue":"14","key":"10.1016\/j.patcog.2024.110301_b37","doi-asserted-by":"crossref","first-page":"17709","DOI":"10.1007\/s11042-017-5209-5","article-title":"Human action recognition with salient trajectories and multiple kernel learning","volume":"77","author":"Yi","year":"2018","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.patcog.2024.110301_b38","first-page":"1","article-title":"A fast non-convex optimization technique for human action recovery from misrepresented 3D motion capture data using trajectory movement and pair-wise hierarchical constraints","author":"Raj","year":"2022","journal-title":"J. Ambient Intell. Humaniz. Comput."},{"key":"10.1016\/j.patcog.2024.110301_b39","doi-asserted-by":"crossref","unstructured":"L. Wang, J. Zhang, L. Zhou, C. Tang, W. Li, Beyond covariance: Feature representation with nonlinear kernel matrices, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4570\u20134578.","DOI":"10.1109\/ICCV.2015.519"},{"issue":"7","key":"10.1016\/j.patcog.2024.110301_b40","doi-asserted-by":"crossref","first-page":"1717","DOI":"10.1109\/TPAMI.2012.274","article-title":"Low-rank matrix approximation with manifold regularization","volume":"35","author":"Zhang","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.patcog.2024.110301_b41","first-page":"4635","article-title":"Adjusting for chance clustering comparison measures","volume":"17","author":"Romano","year":"2016","journal-title":"J. Mach. Learn. Res."},{"issue":"3","key":"10.1016\/j.patcog.2024.110301_b42","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3399806","article-title":"A unified tensor framework for clustering and simultaneous reconstruction of incomplete imaging data","volume":"16","author":"Francis","year":"2020","journal-title":"ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)"},{"issue":"383","key":"10.1016\/j.patcog.2024.110301_b43","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1080\/01621459.1983.10478008","article-title":"A method for comparing two hierarchical clusterings","volume":"78","author":"Fowlkes","year":"1983","journal-title":"J. Amer. Statist. Assoc."},{"key":"10.1016\/j.patcog.2024.110301_b44","series-title":"CVPR 2011","first-page":"1801","article-title":"A closed form solution to robust subspace estimation and clustering","author":"Favaro","year":"2011"},{"key":"10.1016\/j.patcog.2024.110301_b45","article-title":"Low-rank sparse subspace clustering with a clean dictionary","volume":"15","author":"You","year":"2021","journal-title":"J. Algorithms Comput. Technol."},{"key":"10.1016\/j.patcog.2024.110301_b46","article-title":"Subspace clustering via structured sparse relation representation","author":"Wei","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324000529?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320324000529?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,9]],"date-time":"2024-11-09T22:52:00Z","timestamp":1731192720000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320324000529"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6]]},"references-count":46,"alternative-id":["S0031320324000529"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2024.110301","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2024,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Leveraging spatio-temporal features using graph neural networks for human activity recognition","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2024.110301","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"110301"}}