{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T18:36:45Z","timestamp":1723055805717},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,1,28]],"date-time":"2025-01-28T00:00:00Z","timestamp":1738022400000},"content-version":"am","delay-in-days":607,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1016\/j.patcog.2023.109351","type":"journal-article","created":{"date-parts":[[2023,1,25]],"date-time":"2023-01-25T09:22:01Z","timestamp":1674638521000},"page":"109351","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["On a linear fused Gromov-Wasserstein distance for graph structured data"],"prefix":"10.1016","volume":"138","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0380-4197","authenticated-orcid":false,"given":"Dai Hai","family":"Nguyen","sequence":"first","affiliation":[]},{"given":"Koji","family":"Tsuda","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2023.109351_bib0001","series-title":"International Conference on Machine Learning","first-page":"6275","article-title":"Optimal transport for structured data with application on graphs","author":"Titouan","year":"2019"},{"issue":"4","key":"10.1016\/j.patcog.2023.109351_bib0002","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1038\/nbt1196","article-title":"Modeling cellular machinery through biological network comparison","volume":"24","author":"Sharan","year":"2006","journal-title":"Nat. Biotechnol."},{"issue":"14","key":"10.1016\/j.patcog.2023.109351_bib0003","doi-asserted-by":"crossref","first-page":"i164","DOI":"10.1093\/bioinformatics\/btz319","article-title":"Adaptive: learning data-dependent, concise molecular vectors for fast, accurate metabolite identification from tandem mass spectra","volume":"35","author":"Nguyen","year":"2019","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.patcog.2023.109351_bib0004","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s13278-010-0012-6","article-title":"Social network analysis: developments, advances, and prospects","volume":"1","author":"Scott","year":"2011","journal-title":"Soc. Netw. Anal. Min."},{"key":"10.1016\/j.patcog.2023.109351_bib0005","series-title":"Chemical Graph Theory","author":"Trinajstic","year":"2018"},{"key":"10.1016\/j.patcog.2023.109351_bib0006","unstructured":"H. Nguyen, S.-i. Maeda, K. Oono, Semi-supervised learning of hierarchical representations of molecules using neural message passing, arXiv preprint arXiv:1711.10168(2017)."},{"issue":"9","key":"10.1016\/j.patcog.2023.109351_bib0007","article-title":"Weisfeiler-Lehman graph kernels","volume":"12","author":"Shervashidze","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2023.109351_bib0008","series-title":"Fifth IEEE International Conference on Data Mining (ICDM\u201905)","first-page":"8","article-title":"Shortest-path kernels on graphs","author":"Borgwardt","year":"2005"},{"key":"10.1016\/j.patcog.2023.109351_bib0009","series-title":"Proceedings of the 20th International Conference on Machine Learning (ICML-03)","first-page":"321","article-title":"Marginalized kernels between labeled graphs","author":"Kashima","year":"2003"},{"key":"10.1016\/j.patcog.2023.109351_bib0010","series-title":"Optimal transport","first-page":"93","article-title":"The Wasserstein distances","author":"Villani","year":"2009"},{"key":"10.1016\/j.patcog.2023.109351_bib0011","series-title":"Wasserstein Weisfeiler-Lehman Graph Kernels","author":"Togninalli","year":"2019"},{"issue":"4","key":"10.1016\/j.patcog.2023.109351_bib0012","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1007\/s10208-011-9093-5","article-title":"Gromov\u2013Wasserstein distances and the metric approach to object matching","volume":"11","author":"M\u00e9moli","year":"2011","journal-title":"Found. Comput. Math."},{"key":"10.1016\/j.patcog.2023.109351_bib0013","series-title":"International Conference on Machine Learning","first-page":"2664","article-title":"Gromov\u2013Wasserstein averaging of kernel and distance matrices","author":"Peyr\u00e9","year":"2016"},{"issue":"2","key":"10.1016\/j.patcog.2023.109351_bib0014","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1007\/s11263-012-0566-z","article-title":"A linear optimal transportation framework for quantifying and visualizing variations in sets of images","volume":"101","author":"Wang","year":"2013","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.patcog.2023.109351_bib0015","series-title":"Spectral Graph Theory","volume":"Vol.\u00a092","author":"Chung","year":"1997"},{"issue":"9","key":"10.1016\/j.patcog.2023.109351_bib0016","doi-asserted-by":"crossref","first-page":"2833","DOI":"10.1016\/j.patcog.2008.03.011","article-title":"A study of graph spectra for comparing graphs and trees","volume":"41","author":"Wilson","year":"2008","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.patcog.2023.109351_bib0017","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1007\/s10044-008-0141-y","article-title":"A survey of graph edit distance","volume":"13","author":"Gao","year":"2010","journal-title":"Pattern Anal. Appl."},{"key":"10.1016\/j.patcog.2023.109351_bib0018","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.dam.2017.10.007","article-title":"The resistance perturbation distance: a metric for the analysis of dynamic networks","volume":"236","author":"Monnig","year":"2018","journal-title":"Discrete Appl. Math."},{"issue":"3","key":"10.1016\/j.patcog.2023.109351_bib0019","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2824443","article-title":"DeltaCon: principled massive-graph similarity function with attribution","volume":"10","author":"Koutra","year":"2016","journal-title":"ACM Trans. Knowl. Discov. Data (TKDD)"},{"issue":"2","key":"10.1016\/j.patcog.2023.109351_bib0020","doi-asserted-by":"crossref","first-page":"e0228728","DOI":"10.1371\/journal.pone.0228728","article-title":"Metrics for graph comparison: a practitioner\u2019s guide","volume":"15","author":"Wills","year":"2020","journal-title":"PLoS ONE"},{"key":"10.1016\/j.patcog.2023.109351_bib0021","series-title":"NIPS\u201913: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1","first-page":"216","article-title":"Scalable kernels for graphs with continuous attributes","author":"Feragen","year":"2013"},{"key":"10.1016\/j.patcog.2023.109351_bib0022","series-title":"2016\u00a0IEEE 16th International Conference on Data Mining (ICDM)","first-page":"1095","article-title":"Faster kernels for graphs with continuous attributes via hashing","author":"Morris","year":"2016"},{"issue":"7","key":"10.1016\/j.patcog.2023.109351_bib0023","doi-asserted-by":"crossref","first-page":"1585","DOI":"10.1007\/s10994-021-05991-y","article-title":"Learning subtree pattern importance for Weisfeiler-Lehman based graph kernels","volume":"110","author":"Nguyen","year":"2021","journal-title":"Mach. Learn."},{"issue":"4","key":"10.1016\/j.patcog.2023.109351_bib0024","doi-asserted-by":"crossref","first-page":"402","DOI":"10.2307\/2314570","article-title":"Diagonal equivalence to matrices with prescribed row and column sums","volume":"74","author":"Sinkhorn","year":"1967","journal-title":"Am. Math. Month."},{"key":"10.1016\/j.patcog.2023.109351_bib0025","series-title":"NIPS\u201913: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2","first-page":"2292","article-title":"Sinkhorn distances: lightspeed computation of optimal transport","author":"Cuturi","year":"2013"},{"key":"10.1016\/j.patcog.2023.109351_bib0026","series-title":"NIPS\u201907: Proceedings of the 20th International Conference on Neural Information Processing Systems","first-page":"953","article-title":"Support vector machine classification with indefinite kernels","author":"Luss","year":"2007"},{"key":"10.1016\/j.patcog.2023.109351_bib0027","unstructured":"S. Kolouri, N. Naderializadeh, G.K. Rohde, H. Hoffmann, Wasserstein embedding for graph learning, arXiv preprint arXiv:2006.09430"},{"key":"10.1016\/j.patcog.2023.109351_bib0028","series-title":"International Conference on Learning Representations (ICLR)","article-title":"A trainable optimal transport embedding for feature aggregation","author":"Mialon","year":"2020"},{"key":"10.1016\/j.patcog.2023.109351_bib0029","unstructured":"F. Beier, R. Beinert, G. Steidl, On a linear Gromov-Wasserstein distance, arXiv preprint arXiv:2112.11964"},{"key":"10.1016\/j.patcog.2023.109351_bib0030","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"6478","article-title":"Gromov-Wasserstein factorization models for graph clustering","volume":"Vol.\u00a034","author":"Xu","year":"2020"},{"issue":"6","key":"10.1016\/j.patcog.2023.109351_bib0031","doi-asserted-by":"crossref","first-page":"1906","DOI":"10.1021\/ci034143r","article-title":"Spline-fitting with a genetic algorithm: a method for developing classification structure- activity relationships","volume":"43","author":"Sutherland","year":"2003","journal-title":"J. Chem. Inf. Comput. Sci."},{"issue":"4","key":"10.1016\/j.patcog.2023.109351_bib0032","doi-asserted-by":"crossref","first-page":"771","DOI":"10.1016\/S0022-2836(03)00628-4","article-title":"Distinguishing enzyme structures from non-enzymes without alignments","volume":"330","author":"Dobson","year":"2003","journal-title":"J. Mol. Biol."},{"issue":"suppl_1","key":"10.1016\/j.patcog.2023.109351_bib0033","doi-asserted-by":"crossref","first-page":"i47","DOI":"10.1093\/bioinformatics\/bti1007","article-title":"Protein function prediction via graph kernels","volume":"21","author":"Borgwardt","year":"2005","journal-title":"Bioinformatics"},{"key":"10.1016\/j.patcog.2023.109351_bib0034","series-title":"Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR)","first-page":"287","article-title":"IAM graph database repository for graph based pattern recognition and machine learning","author":"Riesen","year":"2008"},{"key":"10.1016\/j.patcog.2023.109351_bib0035","series-title":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1365","article-title":"Deep graph kernels","author":"Yanardag","year":"2015"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320323000523?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320323000523?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,27]],"date-time":"2023-09-27T18:30:55Z","timestamp":1695839455000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320323000523"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6]]},"references-count":35,"alternative-id":["S0031320323000523"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2023.109351","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2023,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On a linear fused Gromov-Wasserstein distance for graph structured data","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2023.109351","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109351"}}