{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T23:18:06Z","timestamp":1720048686124},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100002920","name":"Research Grants Council, University Grants Committee","doi-asserted-by":"publisher","award":["CityU 11215618"],"id":[{"id":"10.13039\/501100002920","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100002418","name":"Intel Corporation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100002418","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007567","name":"City University of Hong Kong","doi-asserted-by":"publisher","award":["6000686","7005641"],"id":[{"id":"10.13039\/100007567","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.patcog.2022.108819","type":"journal-article","created":{"date-parts":[[2022,5,27]],"date-time":"2022-05-27T15:19:11Z","timestamp":1653664751000},"page":"108819","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Towards lifelong object recognition: A dataset and benchmark"],"prefix":"10.1016","volume":"130","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6644-147X","authenticated-orcid":false,"given":"Chuanlin","family":"Lan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3043-2360","authenticated-orcid":false,"given":"Fan","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Qi","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Qi","family":"She","sequence":"additional","affiliation":[]},{"given":"Qihan","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Xinyue","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Ivan","family":"Mashkin","sequence":"additional","affiliation":[]},{"given":"Ka Shun","family":"Kei","sequence":"additional","affiliation":[]},{"given":"Dong","family":"Qiang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8308-6599","authenticated-orcid":false,"given":"Vincenzo","family":"Lomonaco","sequence":"additional","affiliation":[]},{"given":"Xuesong","family":"Shi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7706-553X","authenticated-orcid":false,"given":"Zhengwei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yao","family":"Guo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7673-8800","authenticated-orcid":false,"given":"Yimin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Fei","family":"Qiao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4808-2490","authenticated-orcid":false,"given":"Rosa H.M.","family":"Chan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2022.108819_bib0003","doi-asserted-by":"crossref","first-page":"107049","DOI":"10.1016\/j.patcog.2019.107049","article-title":"A baseline regularization scheme for transfer learning with convolutional neural networks","volume":"98","author":"Li","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2022.108819_bib0004","series-title":"Advances in Neural Information Processing Systems (NIPS)","first-page":"6467","article-title":"Gradient episodic memory for continual learning","author":"Lopez-Paz","year":"2017"},{"key":"10.1016\/j.patcog.2022.108819_bib0005","series-title":"2017 IEEE Symposium on Security and Privacy (SP)","first-page":"19","article-title":"SecureML: a system for scalable privacy-preserving machine learning","author":"Mohassel","year":"2017"},{"key":"10.1016\/j.patcog.2022.108819_bib0006","doi-asserted-by":"crossref","first-page":"107529","DOI":"10.1016\/j.patcog.2020.107529","article-title":"Two-stage knowledge transfer framework for image classification","volume":"107","author":"Zhou","year":"2020","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.patcog.2022.108819_bib0007","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12530-016-9168-2","article-title":"Discussion and review on evolving data streams and concept drift adapting","volume":"9","author":"Khamassi","year":"2018","journal-title":"Evolving Syst."},{"key":"10.1016\/j.patcog.2022.108819_bib0008","doi-asserted-by":"crossref","first-page":"3521","DOI":"10.1073\/pnas.1611835114","article-title":"Overcoming catastrophic forgetting in neural networks","author":"Kirkpatrick","year":"2017","journal-title":"Proc. Natl. Acad. Sci.(PNAS)"},{"key":"10.1016\/j.patcog.2022.108819_bib0009","series-title":"Proceedings of the 35th International Conference on Machine Learning (ICML)","first-page":"4535","article-title":"Progress & compress: a scalable framework for continual learning","author":"Schwarz","year":"2018"},{"issue":"4\u20135","key":"10.1016\/j.patcog.2022.108819_bib0010","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1177\/0278364918770733","article-title":"The limits and potentials of deep learning for robotics","volume":"37","author":"S\u00fcnderhauf","year":"2018","journal-title":"Int. J. Rob. Res."},{"key":"10.1016\/j.patcog.2022.108819_bib0011","series-title":"2016 23rd International Conference on Pattern Recognition (ICPR)","first-page":"2509","article-title":"Semi-supervised tuning from temporal coherence","author":"Maltoni","year":"2016"},{"key":"10.1016\/j.patcog.2022.108819_bib0023","series-title":"2020 IEEE International Conference on Robotics and Automation (ICRA)","first-page":"4767","article-title":"OpenLORIS-object: a robotic vision dataset and benchmark for lifelong deep learning","author":"She","year":"2020"},{"key":"10.1016\/j.patcog.2022.108819_bib0024","unstructured":"G.M. Van de Ven, A.S. Tolias, Three scenarios for continual learning, arXiv preprint arXiv:1904.07734(2019)."},{"key":"10.1016\/j.patcog.2022.108819_bib0025","doi-asserted-by":"crossref","first-page":"504","DOI":"10.3389\/fpsyg.2013.00504","article-title":"The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects","volume":"4","author":"Mermillod","year":"2013","journal-title":"Front. Psychol."},{"issue":"12","key":"10.1016\/j.patcog.2022.108819_bib0012","doi-asserted-by":"crossref","first-page":"2935","DOI":"10.1109\/TPAMI.2017.2773081","article-title":"Learning without forgetting","volume":"40","author":"Li","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"key":"10.1016\/j.patcog.2022.108819_bib0013","series-title":"Proceedings of the 34th International Conference on Machine Learning (ICML)","first-page":"3987","article-title":"Continual learning through synaptic intelligence","volume":"vol.\u00a070","author":"Zenke","year":"2017"},{"issue":"44","key":"10.1016\/j.patcog.2022.108819_bib0014","doi-asserted-by":"crossref","first-page":"467","DOI":"10.1073\/pnas.1803839115","article-title":"Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization","volume":"115","author":"Masse","year":"2018","journal-title":"Proc. Natl. Acad. Sci. (PNAS)"},{"key":"10.1016\/j.patcog.2022.108819_bib0015","series-title":"International Conference on Learning Representations","article-title":"Lifelong learning with dynamically expandable network","author":"Yoon","year":"2018"},{"key":"10.1016\/j.patcog.2022.108819_bib0016","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2001","article-title":"iCaRL: incremental classifier and representation learning","author":"Rebuffi","year":"2017"},{"key":"10.1016\/j.patcog.2022.108819_bib0017","series-title":"Advances in Neural Information Processing Systems (NIPS)","first-page":"2990","article-title":"Continual learning with deep generative replay","author":"Shin","year":"2017"},{"key":"10.1016\/j.patcog.2022.108819_bib0018","unstructured":"Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Z. Zhang, Y. Fu, Incremental classifier learning with generative adversarial networks, arXiv preprint arXiv:1802.00853(2018)."},{"key":"10.1016\/j.patcog.2022.108819_bib0019","unstructured":"G.M. van de Ven, A.S. Tolias, Generative replay with feedback connections as a general strategy for continual learning, arXiv preprint arXiv:1809.10635(2018)."},{"key":"10.1016\/j.patcog.2022.108819_bib0020","doi-asserted-by":"crossref","first-page":"108127","DOI":"10.1016\/j.patcog.2021.108127","article-title":"FoCL: Feature-oriented continual learning for generative models","volume":"120","author":"Lao","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2022.108819_bib0021","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.neunet.2019.03.010","article-title":"Continuous learning in single-incremental-task scenarios","volume":"116","author":"Maltoni","year":"2019","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2022.108819_bib0022","series-title":"2020 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS)","first-page":"10203","article-title":"Latent replay for real-time continual learning","author":"Pellegrini","year":"2020"},{"issue":"11","key":"10.1016\/j.patcog.2022.108819_bib0026","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.patcog.2022.108819_bib0027","unstructured":"P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, P. Perona, Caltech-UCSD birds 200 (2010)."},{"key":"10.1016\/j.patcog.2022.108819_bib0033","series-title":"IEEE International Conference on Robotics and Automation (ICRA)","first-page":"1817","article-title":"A large-scale hierarchical multi-view RGB-D object dataset","author":"Lai","year":"2011"},{"key":"10.1016\/j.patcog.2022.108819_bib0034","series-title":"IEEE International Conference on Robotics and Automation (ICRA)","first-page":"2170","article-title":"Recognizing objects in-the-wild: where do we stand?","author":"Loghmani","year":"2018"},{"key":"10.1016\/j.patcog.2022.108819_bib0001","series-title":"Conference on Robot Learning (CoRL)","first-page":"17","article-title":"CORe50: a new dataset and benchmark for continuous object recognition","author":"Lomonaco","year":"2017"},{"key":"10.1016\/j.patcog.2022.108819_bib0035","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Fast online object tracking and segmentation: a unifying approach","author":"Wang","year":"2019"},{"key":"10.1016\/j.patcog.2022.108819_bib0036","doi-asserted-by":"crossref","DOI":"10.1016\/j.neunet.2019.01.012","article-title":"Continual lifelong learning with neural networks: a review","author":"Parisi","year":"2019","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2022.108819_bib0002","doi-asserted-by":"crossref","first-page":"107383","DOI":"10.1016\/j.patcog.2020.107383","article-title":"Towards non-IID image classification: a dataset and baselines","volume":"110","author":"He","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2022.108819_bib0037","series-title":"Workshop on Continual Learning, Neural Information Processing Systems (NeurIPS)","article-title":"Don\u2019t forget, there is more than forgetting: new metrics for continual learning","author":"D\u00edaz-Rodr\u00edguez","year":"2018"},{"key":"10.1016\/j.patcog.2022.108819_bib0038","article-title":"Transformers in vision: a survey","author":"Khan","year":"2021","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"10.1016\/j.patcog.2022.108819_bib0039","series-title":"International Conference on Machine Learning","first-page":"5583","article-title":"ViLT: vision-and-language transformer without convolution or region supervision","author":"Kim","year":"2021"},{"key":"10.1016\/j.patcog.2022.108819_bib0028","unstructured":"S.A. Nene, S.K. Nayar, H. Murase, et\u00a0al., Columbia object image library (coil-20)(1996)."},{"key":"10.1016\/j.patcog.2022.108819_bib0029","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"97","article-title":"Learning methods for generic object recognition with invariance to pose and lighting","author":"LeCun","year":"2004"},{"key":"10.1016\/j.patcog.2022.108819_bib0030","series-title":"2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP)","first-page":"722","article-title":"Automated flower classification over a large number of classes","author":"Nilsback","year":"2008"},{"key":"10.1016\/j.patcog.2022.108819_bib0031","series-title":"Technical Report","article-title":"Learning Multiple Layers of Features from Tiny Images","author":"Krizhevsky","year":"2009"},{"key":"10.1016\/j.patcog.2022.108819_bib0032","series-title":"Technical Report CNS-TR-2011-001","article-title":"The Caltech-UCSD Birds-200-2011 Dataset","author":"Wah","year":"2011"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320322003004?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320322003004?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T11:02:09Z","timestamp":1672398129000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320322003004"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":39,"alternative-id":["S0031320322003004"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2022.108819","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Towards lifelong object recognition: A dataset and benchmark","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2022.108819","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108819"}}