{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:15:38Z","timestamp":1740111338681,"version":"3.37.3"},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018YFB0204300"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61906200","61932001","62025208"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.patcog.2022.108692","type":"journal-article","created":{"date-parts":[[2022,4,5]],"date-time":"2022-04-05T05:57:20Z","timestamp":1649138240000},"page":"108692","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["General nonconvex total variation and low-rank regularizations: Model, algorithm and applications"],"prefix":"10.1016","volume":"130","author":[{"given":"Tao","family":"Sun","sequence":"first","affiliation":[]},{"given":"Dongsheng","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1\u20132","key":"10.1016\/j.patcog.2022.108692_bib0001","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1007\/s10107-013-0701-9","article-title":"Proximal alternating linearized minimization for nonconvex and nonsmooth problems","volume":"146","author":"Bolte","year":"2014","journal-title":"Math. Program."},{"issue":"1","key":"10.1016\/j.patcog.2022.108692_bib0002","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2011","journal-title":"Foundations and Trends\u00ae in Machine Learning"},{"issue":"1","key":"10.1016\/j.patcog.2022.108692_bib0003","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1007\/s10107-010-0408-0","article-title":"A line search exact penalty method using steering rules","volume":"133","author":"Byrd","year":"2012","journal-title":"Math. Program."},{"issue":"6","key":"10.1016\/j.patcog.2022.108692_bib0004","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1007\/s10208-009-9045-5","article-title":"Exact matrix completion via convex optimization","volume":"9","author":"Cand\u00e8s","year":"2009","journal-title":"Found. Comput. Math."},{"key":"10.1016\/j.patcog.2022.108692_bib0005","doi-asserted-by":"crossref","first-page":"108129","DOI":"10.1016\/j.patcog.2021.108129","article-title":"Dynamic and reliable subtask tracker with general schatten p-norm regularization","volume":"120","author":"Fan","year":"2021","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.patcog.2022.108692_bib0006","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1109\/TNNLS.2019.2909686","article-title":"Exactly robust kernel principal component analysis","volume":"31","author":"Fan","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn.Syst."},{"key":"10.1016\/j.patcog.2022.108692_bib0007","first-page":"5104","article-title":"Factor group-sparse regularization for efficient low-rank matrix recovery","volume":"32","author":"Fan","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.patcog.2022.108692_bib0008","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1109\/TBDATA.2018.2871476","article-title":"Matrix completion via sparse factorization solved by accelerated proximal alternating linearized minimization","volume":"6","author":"Fan","year":"2018","journal-title":"IEEE Trans. Big Data"},{"key":"10.1016\/j.patcog.2022.108692_bib0009","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2021.3059911","article-title":"Coded hyperspectral image reconstruction using deep external and internal learning","author":"Fu","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"key":"10.1016\/j.patcog.2022.108692_bib0010","article-title":"Solving inverse problems with deep neural networks-robustness included","author":"Genzel","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"key":"10.1016\/j.patcog.2022.108692_bib0011","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2021.3091717","article-title":"Recent advances in large margin learning","author":"Guo","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"key":"10.1016\/j.patcog.2022.108692_bib0012","doi-asserted-by":"crossref","first-page":"107292","DOI":"10.1016\/j.patcog.2020.107292","article-title":"An improved GrabCut on multiscale features","volume":"103","author":"He","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2022.108692_bib0013","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2020.3027563","article-title":"Non-local meets global: an integrated paradigm for hyperspectral image restoration","author":"He","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"issue":"1","key":"10.1016\/j.patcog.2022.108692_bib0014","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1109\/TGRS.2015.2452812","article-title":"Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration","volume":"54","author":"He","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.patcog.2022.108692_bib0015","doi-asserted-by":"crossref","first-page":"108537","DOI":"10.1016\/j.patcog.2022.108537","article-title":"Phase retrieval from incomplete data via weighted nuclear norm minimization","author":"Li","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2022.108692_bib0016","doi-asserted-by":"crossref","first-page":"107252","DOI":"10.1016\/j.patcog.2020.107252","article-title":"Smooth robust tensor principal component analysis for compressed sensing of dynamic MRI","volume":"102","author":"Liu","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2022.108692_bib0017","doi-asserted-by":"crossref","first-page":"107758","DOI":"10.1016\/j.patcog.2020.107758","article-title":"Low-rank adaptive graph embedding for unsupervised feature extraction","volume":"113","author":"Lu","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2022.108692_bib0018","series-title":"Variational Analysis and Generalized Differentiation I: Basic Theory","volume":"vol.\u00a0330","author":"Mordukhovich","year":"2006"},{"key":"10.1016\/j.patcog.2022.108692_bib0019","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.patrec.2020.07.007","article-title":"Noninvasive electrocardiographic imaging with low-rank and non-local total variation regularization","volume":"138","author":"Mu","year":"2020","journal-title":"Pattern Recognit. Lett."},{"year":"2018","series-title":"Lectures on Convex Optimization","author":"Nesterov","key":"10.1016\/j.patcog.2022.108692_bib0020"},{"issue":"12","key":"10.1016\/j.patcog.2022.108692_bib0021","doi-asserted-by":"crossref","first-page":"3073","DOI":"10.1109\/TIP.2010.2052275","article-title":"Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction","volume":"19","author":"Nikolova","year":"2010","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patcog.2022.108692_bib0022","article-title":"Iteratively reweighted minimax-concave penalty minimization for accurate low-rank plus sparse matrix decomposition","author":"Pokala","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"year":"2015","series-title":"Convex Analysis","author":"Rockafellar","key":"10.1016\/j.patcog.2022.108692_bib0023"},{"issue":"1\u20134","key":"10.1016\/j.patcog.2022.108692_bib0024","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/0167-2789(92)90242-F","article-title":"Nonlinear total variation based noise removal algorithms","volume":"60","author":"Rudin","year":"1992","journal-title":"Physica D"},{"issue":"12","key":"10.1016\/j.patcog.2022.108692_bib0025","doi-asserted-by":"crossref","first-page":"5632","DOI":"10.1109\/TIP.2017.2745200","article-title":"Convergence of proximal iteratively reweighted nuclear norm algorithm for image processing","volume":"26","author":"Sun","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"20","key":"10.1016\/j.patcog.2022.108692_bib0026","doi-asserted-by":"crossref","first-page":"5380","DOI":"10.1109\/TSP.2018.2868269","article-title":"Iteratively linearized reweighted alternating direction method of multipliers for a class of nonconvex problems","volume":"66","author":"Sun","year":"2018","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.patcog.2022.108692_bib0027","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1016\/j.ins.2019.06.024","article-title":"Bregman reweighted alternating minimization and its application to image deblurring","volume":"503","author":"Sun","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.patcog.2022.108692_bib0028","doi-asserted-by":"crossref","first-page":"4598","DOI":"10.1109\/TIP.2020.2973819","article-title":"Compressive radar imaging of stationary indoor targets with low-rank plus jointly sparse and total variation regularizations","volume":"29","author":"Tang","year":"2020","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.patcog.2022.108692_bib0029","doi-asserted-by":"crossref","first-page":"718","DOI":"10.1109\/JSTSP.2021.3058503","article-title":"Tensor low-rank constraint and l0 total variation for hyperspectral image mixed noise removal","volume":"15","author":"Wang","year":"2021","journal-title":"IEEE J. Sel. Top. Signal Process."},{"issue":"3","key":"10.1016\/j.patcog.2022.108692_bib0030","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1137\/080724265","article-title":"A new alternating minimization algorithm for total variation image reconstruction","volume":"1","author":"Wang","year":"2008","journal-title":"SIAM J. Imaging Sci."},{"issue":"1","key":"10.1016\/j.patcog.2022.108692_bib0031","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1007\/s10915-018-0757-z","article-title":"Global convergence of ADMM in nonconvex nonsmooth optimization","volume":"78","author":"Wang","year":"2019","journal-title":"J. Sci. Comput."},{"key":"10.1016\/j.patcog.2022.108692_bib0032","doi-asserted-by":"crossref","first-page":"108017","DOI":"10.1016\/j.sigpro.2021.108017","article-title":"Adaptive total variation based image segmentation with semi-proximal alternating minimization","volume":"183","author":"Wu","year":"2021","journal-title":"Signal Process."},{"key":"10.1016\/j.patcog.2022.108692_bib0033","doi-asserted-by":"crossref","first-page":"37790","DOI":"10.1109\/ACCESS.2020.2974913","article-title":"A convex variational approach for image deblurring with multiplicative structured noise","volume":"8","author":"Wu","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.patcog.2022.108692_bib0034","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.cam.2019.06.004","article-title":"Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization","volume":"363","author":"Yang","year":"2020","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.patcog.2022.108692_bib0035","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1109\/TCI.2021.3053699","article-title":"Enhanced nonconvex low-rank approximation of tensor multi-modes for tensor completion","volume":"7","author":"Zeng","year":"2021","journal-title":"IEEE Trans. Comput. Imaging"},{"key":"10.1016\/j.patcog.2022.108692_bib0036","doi-asserted-by":"crossref","first-page":"107805","DOI":"10.1016\/j.sigpro.2020.107805","article-title":"Hyperspectral image denoising via global spatial-spectral total variation regularized nonconvex local low-rank tensor approximation","volume":"178","author":"Zeng","year":"2021","journal-title":"Signal Process."},{"key":"10.1016\/j.patcog.2022.108692_bib0037","doi-asserted-by":"crossref","first-page":"108147","DOI":"10.1016\/j.patcog.2021.108147","article-title":"A unified weight learning and low-rank regression model for robust complex error modeling","volume":"120","author":"Zhang","year":"2021","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2022.108692_bib0038","article-title":"Low rank tensor completion with poisson observations","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"key":"10.1016\/j.patcog.2022.108692_bib0039","doi-asserted-by":"crossref","first-page":"107678","DOI":"10.1016\/j.patcog.2020.107678","article-title":"Enhanced low-rank constraint for temporal subspace clustering and its acceleration scheme","volume":"111","author":"Zheng","year":"2021","journal-title":"Pattern Recognit."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S003132032200173X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S003132032200173X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T10:58:35Z","timestamp":1672397915000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S003132032200173X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":39,"alternative-id":["S003132032200173X"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2022.108692","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"General nonconvex total variation and low-rank regularizations: Model, algorithm and applications","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2022.108692","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"108692"}}