{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T20:25:57Z","timestamp":1725481557580},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.patcog.2022.108603","type":"journal-article","created":{"date-parts":[[2022,2,23]],"date-time":"2022-02-23T03:34:03Z","timestamp":1645587243000},"page":"108603","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["R2CI: Information theoretic-guided feature selection with multiple correlations"],"prefix":"10.1016","volume":"127","author":[{"given":"Jihong","family":"Wan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7225-5577","authenticated-orcid":false,"given":"Hongmei","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7780-104X","authenticated-orcid":false,"given":"Tianrui","family":"Li","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Min","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4021-464X","authenticated-orcid":false,"given":"Chuan","family":"Luo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2022.108603_bib0001","doi-asserted-by":"crossref","first-page":"108311","DOI":"10.1016\/j.patcog.2021.108311","article-title":"Nonconvex 3D array image data recovery and pattern recognition under tensor framework","volume":"122","author":"Yang","year":"2022","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.patcog.2022.108603_bib0002","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.neucom.2018.12.062","article-title":"Information propagation model based on hybrid social factors of opportunity, trust and motivation","volume":"333","author":"Wan","year":"2019","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.patcog.2022.108603_bib0003","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0212333","article-title":"A hybrid gene selection algorithm based on interaction information for microarray-based cancer classification","volume":"14","author":"Nakariyakul","year":"2019","journal-title":"PLoS ONE"},{"key":"10.1016\/j.patcog.2022.108603_bib0004","doi-asserted-by":"crossref","first-page":"891","DOI":"10.1016\/j.ins.2021.10.026","article-title":"Dynamic interaction feature selection based on fuzzy rough set","volume":"581","author":"Wan","year":"2021","journal-title":"Inf Sci"},{"key":"10.1016\/j.patcog.2022.108603_bib0005","doi-asserted-by":"crossref","first-page":"108098","DOI":"10.1016\/j.patcog.2021.108098","article-title":"A survey on text generation using generative adversarial networks","volume":"119","author":"de Rosa","year":"2021","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.patcog.2022.108603_bib0006","doi-asserted-by":"crossref","first-page":"110471","DOI":"10.1016\/j.measurement.2021.110471","article-title":"Improved convolutional neural network with feature selection for imbalanced ECG multi-factor classification","volume":"189","author":"Xiong","year":"2022","journal-title":"Measurement"},{"key":"10.1016\/j.patcog.2022.108603_bib0007","doi-asserted-by":"crossref","first-page":"100060","DOI":"10.1016\/j.mlwa.2021.100060","article-title":"Feature selection and deep neural networks for stock price direction forecasting using technical analysis indicators","volume":"5","author":"Peng","year":"2021","journal-title":"Machine Learning with Applications"},{"issue":"8","key":"10.1016\/j.patcog.2022.108603_bib0008","doi-asserted-by":"crossref","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","article-title":"Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy","volume":"27","author":"Peng","year":"2005","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"4","key":"10.1016\/j.patcog.2022.108603_bib0009","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1109\/72.298224","article-title":"Using mutual information for selecting features in supervised neural net learning","volume":"5","author":"Battiti","year":"1994","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.patcog.2022.108603_bib0010","first-page":"1531","article-title":"Fast binary feature selection with conditional mutual information","volume":"5","author":"Fleuret","year":"2004","journal-title":"Journal of Machine Learning Research"},{"issue":"4","key":"10.1016\/j.patcog.2022.108603_bib0011","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1109\/TKDE.2017.2650906","article-title":"Feature selection by maximizing independent classification information","volume":"29","author":"Wang","year":"2017","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"22","key":"10.1016\/j.patcog.2022.108603_bib0012","doi-asserted-by":"crossref","first-page":"8520","DOI":"10.1016\/j.eswa.2015.07.007","article-title":"Feature selection using joint mutual information maximisation","volume":"42","author":"Bennasar","year":"2015","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.patcog.2022.108603_bib0013","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1016\/j.eswa.2017.10.016","article-title":"Feature selection considering two types of feature relevancy and feature interdependency","volume":"93","author":"Hu","year":"2018","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.patcog.2022.108603_bib0014","article-title":"A novel unsupervised approach to heterogeneous feature selection based on fuzzy mutual information","author":"Yuan","year":"2021","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.patcog.2022.108603_bib0015","doi-asserted-by":"crossref","DOI":"10.1109\/TCYB.2021.3112203","article-title":"Interactive and complementary feature selection via fuzzy multigranularity uncertainty measures","author":"Wan","year":"2021","journal-title":"IEEE Trans Cybern"},{"key":"10.1016\/j.patcog.2022.108603_bib0016","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.knosys.2015.07.004","article-title":"Feature selection with redundancy-complementariness dispersion","volume":"89","author":"Chen","year":"2015","journal-title":"Knowl Based Syst"},{"key":"10.1016\/j.patcog.2022.108603_bib0017","doi-asserted-by":"crossref","first-page":"103667","DOI":"10.1016\/j.compbiomed.2020.103667","article-title":"A new feature selection algorithm based on relevance, redundancy and complementarity","volume":"119","author":"Li","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.patcog.2022.108603_bib0018","doi-asserted-by":"crossref","first-page":"105581","DOI":"10.1016\/j.asoc.2019.105581","article-title":"Evolutionary feature subsets selection based on interaction information for high dimensional imbalanced data classification","volume":"82","author":"Hosseini","year":"2019","journal-title":"Appl Soft Comput"},{"issue":"1","key":"10.1016\/j.patcog.2022.108603_bib0019","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1109\/TSMCA.2008.2007977","article-title":"Gait feature subset selection by mutual information","volume":"39","author":"Guo","year":"2009","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans"},{"key":"10.1016\/j.patcog.2022.108603_bib0020","article-title":"Conditional infomax learning: an integrated framework for feature extraction and fusion","author":"Lin","year":"2006","journal-title":"Springer, Berlin, Heidelberg"},{"key":"10.1016\/j.patcog.2022.108603_bib0021","series-title":"Feature selection based on joint mutual information","first-page":"1","author":"Yang","year":"1999"},{"key":"10.1016\/j.patcog.2022.108603_bib0022","doi-asserted-by":"crossref","first-page":"1630","DOI":"10.1016\/j.patrec.2013.04.002","article-title":"Feature interaction maximisation","volume":"34","author":"Bennasar","year":"2013","journal-title":"Pattern Recognit Lett"},{"issue":"4","key":"10.1016\/j.patcog.2022.108603_bib0023","first-page":"116","article-title":"A powerful feature selection approach based on mutual information","volume":"8","author":"Akadi","year":"2008","journal-title":"International Journal of Computer Science and Network Security"},{"key":"10.1016\/j.patcog.2022.108603_bib0024","series-title":"Machine learning based on attribute interactions","author":"Jakulin","year":"2005"},{"key":"10.1016\/j.patcog.2022.108603_bib0025","first-page":"212","article-title":"Feature selection and feature extraction for text categorization","author":"Lewis","year":"1992","journal-title":"Association for Computational Linguistics"},{"issue":"1","key":"10.1016\/j.patcog.2022.108603_bib0026","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1109\/72.977291","article-title":"Input feature selection for classification problems","volume":"13","author":"Kwak","year":"2002","journal-title":"IEEE Trans. Neural Networks"},{"issue":"2","key":"10.1016\/j.patcog.2022.108603_bib0027","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1109\/TNN.2008.2005601","article-title":"Normalized mutual information feature selection","volume":"20","author":"Estvez","year":"2009","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.patcog.2022.108603_bib0028","series-title":"IEEE\/IPSJ International Symposium on Applications and the Internet","first-page":"395","article-title":"An improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information","author":"Vinh","year":"2010"},{"key":"10.1016\/j.patcog.2022.108603_bib0029","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.ins.2015.02.031","article-title":"A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure","volume":"307","author":"Wang","year":"2015","journal-title":"Inf Sci"},{"key":"10.1016\/j.patcog.2022.108603_bib0030","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.ins.2017.05.013","article-title":"Maximum relevance minimum common redundancy feature selection for nonlinear data","volume":"409\u2013410","author":"Che","year":"2017","journal-title":"Inf Sci (Ny)"},{"key":"10.1016\/j.patcog.2022.108603_bib0031","doi-asserted-by":"crossref","first-page":"652","DOI":"10.1016\/j.ins.2017.08.036","article-title":"Feature selection by optimizing a lower bound of conditional mutual information","volume":"418\u2013419","author":"Peng","year":"2017","journal-title":"Inf Sci (Ny)"},{"key":"10.1016\/j.patcog.2022.108603_bib0032","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.eswa.2018.05.029","article-title":"Feature selection by integrating two groups of feature evaluation criteria","volume":"110","author":"Gao","year":"2018","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.patcog.2022.108603_bib0033","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.patrec.2018.06.005","article-title":"Feature selection considering the composition of feature relevancy","volume":"112","author":"Gao","year":"2018","journal-title":"Pattern Recognit Lett"},{"key":"10.1016\/j.patcog.2022.108603_bib0034","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1016\/j.knosys.2012.10.001","article-title":"Feature selection using dynamic weights for classification","volume":"37","author":"Sun","year":"2013","journal-title":"Knowl Based Syst"},{"key":"10.1016\/j.patcog.2022.108603_bib0035","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1016\/j.jbi.2012.10.004","article-title":"Selection of interdependent genes via dynamic relevance analysis for cancer diagnosis","volume":"46","author":"Sun","year":"2013","journal-title":"J Biomed Inform"},{"key":"10.1016\/j.patcog.2022.108603_bib0036","doi-asserted-by":"crossref","first-page":"2656","DOI":"10.1016\/j.patcog.2015.02.025","article-title":"A novel feature selection method considering feature interaction","volume":"48","author":"Zeng","year":"2015","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.patcog.2022.108603_bib0037","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1016\/j.patcog.2018.02.020","article-title":"Class-specific mutual information variation for feature selection","volume":"79","author":"Gao","year":"2018","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.patcog.2022.108603_bib0038","doi-asserted-by":"crossref","first-page":"115365","DOI":"10.1016\/j.eswa.2021.115365","article-title":"A feature selection method via analysis of relevance, redundancy, and interaction","volume":"183","author":"Wang","year":"2021","journal-title":"Expert Syst Appl"},{"issue":"3","key":"10.1016\/j.patcog.2022.108603_bib0039","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1109\/JSTSP.2008.923858","article-title":"Information-theoretic feature selection in microarray data using variable complementarity","volume":"2","author":"Meyer","year":"2008","journal-title":"IEEE J Sel Top Signal Process"},{"issue":"14","key":"10.1016\/j.patcog.2022.108603_bib0040","doi-asserted-by":"crossref","first-page":"6371","DOI":"10.1016\/j.eswa.2014.04.019","article-title":"MIFS-ND: A mutual information-based feature selection method","volume":"41","author":"Hoque","year":"2014","journal-title":"Expert Syst Appl"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S003132032200084X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S003132032200084X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T05:55:24Z","timestamp":1672379724000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S003132032200084X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":40,"alternative-id":["S003132032200084X"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2022.108603","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"R2CI: Information theoretic-guided feature selection with multiple correlations","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2022.108603","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108603"}}