{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:07:52Z","timestamp":1728176872902},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013804","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013804","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010822","name":"Science and Technology Bureau of Chengdu","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010822","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.patcog.2021.107996","type":"journal-article","created":{"date-parts":[[2021,4,28]],"date-time":"2021-04-28T16:10:39Z","timestamp":1619626239000},"page":"107996","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":89,"special_numbering":"C","title":["Robust deepk<\/mml:mi><\/mml:math>-means: An effective and simple method for data clustering"],"prefix":"10.1016","volume":"117","author":[{"given":"Shudong","family":"Huang","sequence":"first","affiliation":[]},{"given":"Zhao","family":"Kang","sequence":"additional","affiliation":[]},{"given":"Zenglin","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Quanhui","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2021.107996_bib0001","series-title":"Proceedings of the International Conference on Neural Computing for Advanced Applications","first-page":"272","article-title":"Deep k-means: a simple and effective method for data clustering","author":"Huang","year":"2020"},{"issue":"8","key":"10.1016\/j.patcog.2021.107996_bib0002","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1016\/j.patrec.2009.09.011","article-title":"Data clustering: 50 years beyond k-means","volume":"31","author":"Jain","year":"2010","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2021.107996_bib0003","first-page":"1705","article-title":"Clustering with Bregman divergences","volume":"6","author":"Banerjee","year":"2005","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"10.1016\/j.patcog.2021.107996_bib0004","article-title":"An improved clustering algorithm for text mining: multi-cluster spherical k-means","volume":"13","author":"Tunali","year":"2016","journal-title":"Int. Arab J. Inf. Technol."},{"issue":"6","key":"10.1016\/j.patcog.2021.107996_bib0005","first-page":"518","article-title":"On speech recognition algorithms","volume":"8","author":"Ault","year":"2018","journal-title":"Int. J. Mach. Learn. Comput."},{"issue":"5","key":"10.1016\/j.patcog.2021.107996_bib0006","doi-asserted-by":"crossref","first-page":"1917","DOI":"10.1016\/j.patcog.2013.11.014","article-title":"Robust level set image segmentation via a local correntropy-based k-means clustering","volume":"47","author":"Wang","year":"2014","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.patcog.2021.107996_bib0007","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1007\/s10115-016-0988-y","article-title":"Weighted-object ensemble clustering: methods and analysis","volume":"51","author":"Ren","year":"2017","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.patcog.2021.107996_bib0008","series-title":"Proceedings of Berkeley Symposium on Mathematical Statistics and Probability","first-page":"281","article-title":"Some methods for classification and analysis of multivariate observations","author":"Macqueen","year":"1967"},{"key":"10.1016\/j.patcog.2021.107996_bib0009","series-title":"Advances in Neural Information Processing Systems","first-page":"849","article-title":"On spectral clustering: analysis and an algorithm","author":"Ng","year":"2002"},{"issue":"8","key":"10.1016\/j.patcog.2021.107996_bib0010","first-page":"1548","article-title":"Graph regularized nonnegative matrix factorization for data representation","volume":"33","author":"Cai","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.patcog.2021.107996_bib0011","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1109\/34.982897","article-title":"Information theoretic clustering","volume":"24","author":"Gokcay","year":"2002","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2021.107996_bib0012","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.ins.2017.03.030","article-title":"An information-theoretic approach to hierarchical clustering of uncertain data","volume":"402","author":"Gullo","year":"2017","journal-title":"Inf. Sci."},{"key":"10.1016\/j.patcog.2021.107996_bib0013","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TKDE.2021.3117842","article-title":"Measuring diversity in graph learning: a unified framework for structured multi-view clustering","author":"Huang","year":"2021","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2021.107996_bib0014","series-title":"Proceedings of the 21st AAAI Conference on Artificial Intelligence","first-page":"2921","article-title":"Multi-view clustering via deep matrix factorization","author":"Zhao","year":"2017"},{"issue":"1","key":"10.1016\/j.patcog.2021.107996_bib0015","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10115-007-0114-2","article-title":"Top 10 algorithms in data mining","volume":"14","author":"Wu","year":"2008","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.patcog.2021.107996_bib0016","series-title":"Advances in Neural Information Processing Systems","first-page":"24","article-title":"Deep subspace clustering networks","author":"Ji","year":"2017"},{"key":"10.1016\/j.patcog.2021.107996_bib0017","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1596","article-title":"Deep adversarial subspace clustering","author":"Zhou","year":"2018"},{"key":"10.1016\/j.patcog.2021.107996_bib0018","series-title":"Proceedings of the 26th International Joint Conference on Artificial Intelligence","first-page":"1753","article-title":"Improved deep embedded clustering with local structure preservation","author":"Guo","year":"2017"},{"key":"10.1016\/j.patcog.2021.107996_bib0019","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"5736","article-title":"Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization","author":"Ghasedi Dizaji","year":"2017"},{"issue":"10","key":"10.1016\/j.patcog.2021.107996_bib0020","doi-asserted-by":"crossref","first-page":"5076","DOI":"10.1109\/TIP.2018.2848470","article-title":"Structured autoencoders for subspace clustering","volume":"27","author":"Peng","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patcog.2021.107996_bib0021","first-page":"1","article-title":"Deep clustering with sample-assignment invariance prior","author":"Peng","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.patcog.2021.107996_bib0022","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"5473","article-title":"Self-supervised convolutional subspace clustering network","author":"Zhang","year":"2019"},{"key":"10.1016\/j.patcog.2021.107996_bib0023","series-title":"Proceedings of the 21st International Conference on Machine Learning","first-page":"29","article-title":"K-means clustering via principal component analysis","author":"Ding","year":"2004"},{"issue":"10","key":"10.1016\/j.patcog.2021.107996_bib0024","first-page":"1","article-title":"Spherical k-means clustering","volume":"50","author":"Buchta","year":"2012","journal-title":"J. Stat. Softw."},{"key":"10.1016\/j.patcog.2021.107996_bib0025","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.eswa.2016.09.025","article-title":"An improved overlapping k-means clustering method for medical applications","volume":"67","author":"Khanmohammadi","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.patcog.2021.107996_bib0026","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/j.ins.2017.07.036","article-title":"An efficient k-means clustering filtering algorithm using density based initial cluster centers","volume":"418","author":"Kumar","year":"2017","journal-title":"Inf. Sci."},{"key":"10.1016\/j.patcog.2021.107996_bib0027","series-title":"International Conference on Artificial Intelligence and Statistics","first-page":"691","article-title":"Entropy weighted power k-means clustering","author":"Chakraborty","year":"2020"},{"key":"10.1016\/j.patcog.2021.107996_bib0028","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.knosys.2016.06.031","article-title":"An efficient approximation to the k-means clustering for massive data","volume":"117","author":"Cap\u00f3","year":"2017","journal-title":"Knowledge-Based Syst."},{"issue":"1","key":"10.1016\/j.patcog.2021.107996_bib0029","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000006","article-title":"Learning deep architectures for AI","volume":"2","author":"Bengio","year":"2009","journal-title":"Found. Trends\u00ae Mach. Learn."},{"key":"10.1016\/j.patcog.2021.107996_bib0030","series-title":"Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"126","article-title":"Orthogonal nonnegative matrix t-factorizations for clustering","author":"Ding","year":"2006"},{"issue":"2","key":"10.1016\/j.patcog.2021.107996_bib0031","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1007\/s10618-017-0543-9","article-title":"Robust graph regularized nonnegative matrix factorization for clustering","volume":"32","author":"Huang","year":"2018","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.patcog.2021.107996_bib0032","series-title":"Advances in Neural Information Processing Systems","first-page":"556","article-title":"Algorithms for non-negative matrix factorization","author":"Lee","year":"2001"},{"issue":"9","key":"10.1016\/j.patcog.2021.107996_bib0033","doi-asserted-by":"crossref","first-page":"2421","DOI":"10.1162\/NECO_a_00168","article-title":"Algorithms for nonnegative matrix factorization with the \u03b2-divergence","volume":"23","author":"F\u00e9votte","year":"2011","journal-title":"Neural Comput."},{"issue":"3","key":"10.1016\/j.patcog.2021.107996_bib0034","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1109\/TPAMI.2016.2554555","article-title":"A deep matrix factorization method for learning attribute representations","volume":"39","author":"Trigeorgis","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.patcog.2021.107996_bib0035","first-page":"1","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2011","journal-title":"Found. Trends\u00ae Mach. learn."},{"key":"10.1016\/j.patcog.2021.107996_bib0036","series-title":"Proceedings of the 20th ACM International Conference on Information and Knowledge Management","first-page":"673","article-title":"Robust nonnegative matrix factorization using l21-norm","author":"Kong","year":"2011"},{"key":"10.1016\/j.patcog.2021.107996_bib0037","series-title":"Proceedings of the 24th ACM International on Conference on Information and Knowledge Management","first-page":"871","article-title":"Robust capped norm nonnegative matrix factorization: capped norm NMF","author":"Gao","year":"2015"},{"issue":"1","key":"10.1016\/j.patcog.2021.107996_bib0038","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/TPAMI.2008.277","article-title":"Convex and semi-nonnegative matrix factorizations","volume":"32","author":"Ding","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2021.107996_bib0039","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.patcog.2019.107015","article-title":"Auto-weighted multi-view clustering via deep matrix decomposition","volume":"97","author":"Huang","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2021.107996_bib0040","series-title":"Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing","first-page":"1","article-title":"Non-negative matrix completion for bandwidth extension: a convex optimization approach","author":"Sun","year":"2013"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320321001837?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320321001837?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,2]],"date-time":"2023-11-02T22:17:20Z","timestamp":1698963440000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320321001837"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":40,"alternative-id":["S0031320321001837"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2021.107996","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust deep -means: An effective and simple method for data clustering","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2021.107996","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107996"}}