{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T05:11:59Z","timestamp":1725253919096},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61801242","61976115","315025305","61772268"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004193","name":"Nanjing University of Aeronautics and Astronautics","doi-asserted-by":"publisher","award":["XZA20003"],"id":[{"id":"10.13039\/501100004193","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001602","name":"Science Foundation Ireland","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001602","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001637","name":"Trinity College Dublin","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001637","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.patcog.2021.107995","type":"journal-article","created":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T06:04:59Z","timestamp":1619244299000},"page":"107995","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Cross-scene foreground segmentation with supervised and unsupervised model communication"],"prefix":"10.1016","volume":"117","author":[{"given":"Dong","family":"Liang","sequence":"first","affiliation":[]},{"given":"Bin","family":"Kang","sequence":"additional","affiliation":[]},{"given":"Xinyu","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Pan","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Xiaoyang","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Shun\u2019ichi","family":"Kaneko","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2021.107995_bib0001","first-page":"291","article-title":"A benchmark dataset for outdoor foreground\/background extraction","author":"Vacavant","year":"2012","journal-title":"Asian Conference on Computer Vision"},{"issue":"7","key":"10.1016\/j.patcog.2021.107995_bib0002","doi-asserted-by":"crossref","first-page":"1151","DOI":"10.1109\/JPROC.2002.801448","article-title":"Background and foreground modeling using nonparametric kernel density estimation for visual surveillance","volume":"90","author":"Elgammal","year":"2002","journal-title":"Proc IEEE"},{"key":"10.1016\/j.patcog.2021.107995_bib0003","first-page":"1743","article-title":"A co-occurrence background model with hypothesis on degradation modification for object detection in strong background changes","author":"Zhou","year":"2018","journal-title":"International Conference on Pattern Recognition"},{"key":"10.1016\/j.patcog.2021.107995_bib0004","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.sigpro.2019.02.021","article-title":"Foreground detection based on co-occurrence background model with hypothesis on degradation modification in dynamic scenes","volume":"160","author":"Zhou","year":"2019","journal-title":"Signal Processing"},{"issue":"23","key":"10.1016\/j.patcog.2021.107995_bib0005","doi-asserted-by":"crossref","first-page":"5142","DOI":"10.3390\/s19235142","article-title":"Spatio-temporal attention model for foreground detection in cross-scene surveillance videos","volume":"19","author":"Liang","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.patcog.2021.107995_bib0006","series-title":"CVPR","article-title":"Pyramid scene parsing network","author":"Zhao","year":"2017"},{"key":"10.1016\/j.patcog.2021.107995_bib0007","first-page":"833","article-title":"Encoder-decoder with atrous separable convolution for semantic image segmentation","author":"Chen","year":"2018","journal-title":"CVPR"},{"issue":"4","key":"10.1016\/j.patcog.2021.107995_bib0008","doi-asserted-by":"crossref","first-page":"1374","DOI":"10.1016\/j.patcog.2014.10.020","article-title":"Co-occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes","volume":"48","author":"Liang","year":"2015","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.patcog.2021.107995_bib0009","first-page":"2020","article-title":"Adaptive local spatial modeling for online change detection under abrupt dynamic background","author":"Liang","year":"2017","journal-title":"International Conference on Image Processing"},{"key":"10.1016\/j.patcog.2021.107995_bib0010","series-title":"ICASSP","first-page":"2377","article-title":"Advances in background updating and shadow removing for motion detection algorithms","volume":"6","author":"Spagnolo","year":"2005"},{"issue":"5","key":"10.1016\/j.patcog.2021.107995_bib0011","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1016\/j.imavis.2006.01.001","article-title":"Moving object segmentation by background subtraction and temporal analysis","volume":"24","author":"Spagnolo","year":"2006","journal-title":"Image Vision Comput."},{"issue":"7","key":"10.1016\/j.patcog.2021.107995_bib0012","doi-asserted-by":"crossref","first-page":"780","DOI":"10.1109\/34.598236","article-title":"Pfinder: real-time tracking of the human body","volume":"19","author":"Wren","year":"1997","journal-title":"IEEE TPAMI"},{"key":"10.1016\/j.patcog.2021.107995_bib0013","first-page":"246","article-title":"Adaptive background mixture models for real-time tracking","volume":"2","author":"Stauffer","year":"1999","journal-title":"IEEE Computer Society Conference on Computer Vision & Pattern Recognition"},{"key":"10.1016\/j.patcog.2021.107995_bib0014","first-page":"336","article-title":"A probabilistic background model for tracking","author":"Rittscher","year":"2000","journal-title":"ECCV"},{"issue":"8","key":"10.1016\/j.patcog.2021.107995_bib0015","doi-asserted-by":"crossref","first-page":"831","DOI":"10.1109\/34.868684","article-title":"A bayesian computer vision system for modeling human interactions","volume":"22","author":"Oliver","year":"2000","journal-title":"IEEE TPAMI"},{"issue":"11","key":"10.1016\/j.patcog.2021.107995_bib0016","doi-asserted-by":"crossref","first-page":"1778","DOI":"10.1109\/TPAMI.2005.213","article-title":"Bayesian modeling of dynamic scenes for object detection","volume":"27","author":"Sheikh","year":"2005","journal-title":"IEEE TPAMI"},{"issue":"4","key":"10.1016\/j.patcog.2021.107995_bib0017","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1109\/TPAMI.2006.68","article-title":"A texture-based method for modeling the background and detecting moving objects","volume":"28","author":"Heikkila","year":"2006","journal-title":"IEEE TPAMI"},{"issue":"3","key":"10.1016\/j.patcog.2021.107995_bib0018","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/s11263-010-0399-6","article-title":"Incremental tensor subspace learning and its applications to foreground segmentation and tracking","volume":"91","author":"Hu","year":"2011","journal-title":"IJCV"},{"issue":"6","key":"10.1016\/j.patcog.2021.107995_bib0019","doi-asserted-by":"crossref","first-page":"2319","DOI":"10.1007\/s11554-018-0750-7","article-title":"Superbe: computationally light background estimation with superpixels","volume":"16","author":"Chen","year":"2019","journal-title":"Journal of Real-time Image Processing"},{"key":"10.1016\/j.patcog.2021.107995_bib0020","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.eswa.2018.10.025","article-title":"Real-time record sensitive background classifier (rsbc)","volume":"119","author":"Roy","year":"2019","journal-title":"Expert Syst Appl"},{"issue":"6","key":"10.1016\/j.patcog.2021.107995_bib0021","doi-asserted-by":"crossref","first-page":"1709","DOI":"10.1109\/TIP.2010.2101613","article-title":"Vibe: a universal background subtraction algorithm for video sequences","volume":"20","author":"Barnich","year":"2011","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.patcog.2021.107995_bib0022","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1109\/TIP.2014.2378053","article-title":"Subsense: a universal change detection method with local adaptive sensitivity","volume":"24","author":"Stcharles","year":"2015","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.patcog.2021.107995_bib0023","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1007\/s10044-018-0699-y","article-title":"Bmog: boosted gaussian mixture model with controlled complexity for background subtraction","volume":"21","author":"Martins","year":"2018","journal-title":"Pattern Analysis and Applications"},{"key":"10.1016\/j.patcog.2021.107995_bib0024","first-page":"1","article-title":"Deep background subtraction with scene-specific convolutional neural networks","author":"Braham","year":"2016","journal-title":"International Conference on Systems"},{"key":"10.1016\/j.patcog.2021.107995_bib0025","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1016\/j.patcog.2017.09.040","article-title":"A deep convolutional neural network for background subtraction","volume":"76","author":"Babaee","year":"2018","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.patcog.2021.107995_bib0026","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.patrec.2016.09.014","article-title":"Interactive deep learning method for segmenting moving objects","volume":"96","author":"Wang","year":"2017","journal-title":"Pattern Recognit Lett"},{"issue":"10","key":"10.1016\/j.patcog.2021.107995_bib0027","doi-asserted-by":"crossref","first-page":"4810","DOI":"10.1109\/TIP.2018.2845123","article-title":"Robust foreground estimation via structured gaussian scale mixture modeling.","volume":"27","author":"Shi","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patcog.2021.107995_bib0028","first-page":"1","article-title":"Background subtraction based on deep pixel distribution learning","author":"Zhao","year":"2018","journal-title":"International Conference on Multimedia and Expo"},{"key":"10.1016\/j.patcog.2021.107995_bib0029","doi-asserted-by":"crossref","first-page":"85949","DOI":"10.1109\/ACCESS.2019.2925913","article-title":"A fully convolutional encoder-decoder spatial-temporal network for real-time background subtraction","volume":"7","author":"Qiu","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.patcog.2021.107995_bib0030","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.patrec.2018.08.002","article-title":"Foreground segmentation using convolutional neural networks for multiscale feature encoding","volume":"112","author":"Lim","year":"2018","journal-title":"Pattern Recognit Lett"},{"key":"10.1016\/j.patcog.2021.107995_bib0031","first-page":"1","article-title":"Learning multi-scale features for foreground segmentation","author":"Lim","year":"2019","journal-title":"Pattern Analysis and Applications"},{"key":"10.1016\/j.patcog.2021.107995_bib0032","first-page":"6819","article-title":"Boundary-aware feature propagation for scene segmentation","author":"Ding","year":"2019","journal-title":"ICCV"},{"key":"10.1016\/j.patcog.2021.107995_bib0033","series-title":"IEEE\/CVF Conference on Computer Vision and Pattern Recognition","article-title":"Context contrasted feature and gated multi-scale aggregation for scene segmentation","author":"Ding","year":"2018"},{"key":"10.1016\/j.patcog.2021.107995_bib0034","doi-asserted-by":"crossref","first-page":"3520","DOI":"10.1109\/TIP.2019.2962685","article-title":"Semantic segmentation with context encoding and multi-path decoding","volume":"29","author":"Ding","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patcog.2021.107995_bib0035","first-page":"8885","article-title":"Semantic correlation promoted shape-variant context for segmentation","author":"Ding","year":"2019","journal-title":"CVPR"},{"key":"10.1016\/j.patcog.2021.107995_bib0036","first-page":"1","article-title":"Changedetection.net: a new change detection benchmark dataset","author":"Goyette","year":"2012","journal-title":"CVPR workshop"},{"key":"10.1016\/j.patcog.2021.107995_bib0037","first-page":"633","article-title":"Scene parsing through ADE20K dataset.","author":"Zhou","year":"2017","journal-title":"IEEE conference on computer vision and pattern recognition(CVPR)"},{"key":"10.1016\/j.patcog.2021.107995_bib0038","first-page":"4552","article-title":"Semantic background subtraction","author":"Braham","year":"2017","journal-title":"IEEE ICIP"},{"key":"10.1016\/j.patcog.2021.107995_bib0039","first-page":"38","article-title":"Background segmentation with feedback: the pixel-based adaptive segmenter","author":"Hofmann","year":"2012","journal-title":"Computer Vision and Pattern Recognition Workshops"},{"key":"10.1016\/j.patcog.2021.107995_bib0040","first-page":"255","article-title":"Wallflower: principles and practice of background maintenance","author":"Toyama","year":"1999","journal-title":"ICCV"},{"key":"10.1016\/j.patcog.2021.107995_sbref0041","year":"2021"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320321001825?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320321001825?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T10:25:19Z","timestamp":1672395919000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320321001825"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":41,"alternative-id":["S0031320321001825"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2021.107995","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Cross-scene foreground segmentation with supervised and unsupervised model communication","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2021.107995","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107995"}}