{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,3]],"date-time":"2024-07-03T23:18:20Z","timestamp":1720048700759},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100008628","name":"Ministry of Electronics and Information Technology","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100008628","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.patcog.2021.107982","type":"journal-article","created":{"date-parts":[[2021,4,8]],"date-time":"2021-04-08T01:26:55Z","timestamp":1617845215000},"page":"107982","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Rough-Bayesian approach to select class-pair specific descriptors for HEp-2 cell staining pattern recognition"],"prefix":"10.1016","volume":"117","author":[{"given":"Debamita","family":"Kumar","sequence":"first","affiliation":[]},{"given":"Pradipta","family":"Maji","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"8","key":"10.1016\/j.patcog.2021.107982_bib0001","first-page":"1420","article-title":"ANA Screening: an old test with new recommendations","volume":"69","author":"Meroni","year":"2010","journal-title":"Autoimmun Rev"},{"issue":"3","key":"10.1016\/j.patcog.2021.107982_bib0002","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1109\/TITB.2008.2010855","article-title":"Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis","volume":"13","author":"Soda","year":"2009","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"issue":"3","key":"10.1016\/j.patcog.2021.107982_bib0003","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1007\/s10044-008-0116-z","article-title":"A multiple expert system for classifying fluorescent intensity in antinuclear autoantibodies analysis","volume":"12","author":"Soda","year":"2009","journal-title":"Pattern Analysis and Applications"},{"key":"10.1016\/j.patcog.2021.107982_bib0004","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.patrec.2014.03.011","article-title":"Mitotic cells recognition in HEp-2 images","volume":"45","author":"Iannello","year":"2014","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2021.107982_bib0005","doi-asserted-by":"crossref","first-page":"558","DOI":"10.1016\/j.asoc.2016.03.010","article-title":"Rough-probabilistic clustering and hidden markov random field model for segmentation of HEp-2 cell and brain MR images","volume":"46","author":"Banerjee","year":"2016","journal-title":"Appl. Soft. Comput."},{"issue":"4","key":"10.1016\/j.patcog.2021.107982_bib0006","doi-asserted-by":"crossref","first-page":"434","DOI":"10.1002\/art.10561","article-title":"Evidence-Based guidelines for the use of immunologic tests: antinuclear antibody testing","volume":"47","author":"Solomon","year":"2002","journal-title":"Arthritis Rheum."},{"key":"10.1016\/j.patcog.2021.107982_bib0007","series-title":"Proceedings of the IEEE Workshop on Applications of Computer Vision","first-page":"95","article-title":"Classification of Human Epithelial Type 2 Cell Indirect Immunofluoresence Images Via Codebook Based Descriptors","author":"Wiliem","year":"2013"},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0008","doi-asserted-by":"crossref","first-page":"2389","DOI":"10.1016\/j.patcog.2013.09.024","article-title":"Subclass discriminant analysis of morphological and textural features for HEp-2 staining pattern classification","volume":"47","author":"Cataldo","year":"2014","journal-title":"Pattern Recognit."},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0009","doi-asserted-by":"crossref","first-page":"2338","DOI":"10.1016\/j.patcog.2013.10.012","article-title":"HEp-2 Fluorescence pattern classification","volume":"47","author":"Snell","year":"2014","journal-title":"Pattern Recognit."},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0010","doi-asserted-by":"crossref","first-page":"2409","DOI":"10.1016\/j.patcog.2013.09.021","article-title":"Efficient k-NN based HEp-2 cells classifier","volume":"47","author":"Stoklasa","year":"2014","journal-title":"Pattern Recognit."},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0011","doi-asserted-by":"crossref","first-page":"2367","DOI":"10.1016\/j.patcog.2013.09.026","article-title":"HEp-2 Cells classification via sparse representation of textural features fused into dissimilarity space","volume":"47","author":"Theodorakopoulos","year":"2014","journal-title":"Pattern Recognit."},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0012","doi-asserted-by":"crossref","first-page":"2315","DOI":"10.1016\/j.patcog.2013.10.014","article-title":"Automatic classification of human epithelial type 2 cell indirect immunofluorescence images using cell pyramid matching","volume":"47","author":"Wiliem","year":"2014","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2021.107982_bib0013","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","article-title":"Distinctive image features from scale-Invariant keypoints","volume":"60","author":"Lowe","year":"2004","journal-title":"Int. J. Comput. Vis."},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0014","doi-asserted-by":"crossref","first-page":"2348","DOI":"10.1016\/j.patcog.2013.10.011","article-title":"Fisher tensors for classifying human epithelial cells","volume":"47","author":"Faraki","year":"2014","journal-title":"Pattern Recognit."},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0015","doi-asserted-by":"crossref","first-page":"2379","DOI":"10.1016\/j.patcog.2013.09.025","article-title":"HEp-2 Cell pattern classification with discriminative dictionary learning","volume":"47","author":"Kong","year":"2014","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.patcog.2021.107982_bib0016","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/0031-3203(95)00067-4","article-title":"A comparative study of texture measures with classification based on feature distributions","volume":"29","author":"Ojala","year":"1996","journal-title":"Pattern Recognit."},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0017","doi-asserted-by":"crossref","first-page":"971","DOI":"10.1109\/TPAMI.2002.1017623","article-title":"Multiresolution gray-Scale and rotation invariant texture classification with local binary patterns","volume":"24","author":"Ojala","year":"2002","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2021.107982_bib0018","series-title":"Proceedings of the Advances in Image and Video Technology","first-page":"82","article-title":"Feature Extraction Based on Co-Occurrence of Adjacent Local Binary Patterns","author":"Nosaka","year":"2012"},{"issue":"6","key":"10.1016\/j.patcog.2021.107982_bib0019","doi-asserted-by":"crossref","first-page":"1657","DOI":"10.1109\/TIP.2010.2044957","article-title":"A completed modeling of local binary pattern operator for texture classification","volume":"19","author":"Guo","year":"2010","journal-title":"IEEE Trans. Image Process."},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0020","doi-asserted-by":"crossref","first-page":"2428","DOI":"10.1016\/j.patcog.2013.09.018","article-title":"HEp-2 Cell classification using rotation invariant co-Occurrence among local binary patterns","volume":"47","author":"Nosaka","year":"2014","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.patcog.2021.107982_bib0021","doi-asserted-by":"crossref","first-page":"1368","DOI":"10.1109\/TIP.2016.2522378","article-title":"Median robust extended local binary pattern for texture classification","volume":"25","author":"Liu","year":"2016","journal-title":"IEEE Trans. Image Process."},{"issue":"9","key":"10.1016\/j.patcog.2021.107982_bib0022","doi-asserted-by":"crossref","first-page":"1093","DOI":"10.1016\/j.patrec.2012.01.017","article-title":"Noise tolerant local binary pattern operator for efficient texture analysis","volume":"33","author":"Fathi","year":"2012","journal-title":"Pattern Recognit. Lett."},{"issue":"11","key":"10.1016\/j.patcog.2021.107982_bib0023","doi-asserted-by":"crossref","first-page":"2199","DOI":"10.1109\/TPAMI.2014.2316826","article-title":"Pairwise rotation invariant co-Occurrence local binary pattern","volume":"36","author":"Qi","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.patcog.2021.107982_bib0024","doi-asserted-by":"crossref","first-page":"1635","DOI":"10.1109\/TIP.2010.2042645","article-title":"Enhanced local texture feature sets for face recognition under difficult lighting conditions","volume":"19","author":"Tan","year":"2010","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"10.1016\/j.patcog.2021.107982_bib0025","doi-asserted-by":"crossref","first-page":"1107","DOI":"10.1109\/TIP.2009.2015682","article-title":"Dominant local binary patterns for texture classification","volume":"18","author":"Liao","year":"2009","journal-title":"IEEE Trans. Image Process."},{"issue":"10\u201311","key":"10.1016\/j.patcog.2021.107982_bib0026","doi-asserted-by":"crossref","first-page":"2287","DOI":"10.1016\/j.patcog.2010.12.012","article-title":"Discriminative deep belief networks for visual data classification","volume":"44","author":"Liu","year":"2011","journal-title":"Pattern Recognit."},{"issue":"8","key":"10.1016\/j.patcog.2021.107982_bib0027","doi-asserted-by":"crossref","first-page":"1618","DOI":"10.3390\/app9081618","article-title":"Deep CNN for IIF images classification in autoimmune diagnostics","volume":"9","author":"Cascio","year":"2019","journal-title":"Applied Sciences"},{"issue":"7","key":"10.1016\/j.patcog.2021.107982_bib0028","doi-asserted-by":"crossref","first-page":"1561","DOI":"10.1109\/TMI.2017.2672702","article-title":"HEp-2 Specimen image segmentation and classification using very deep fully convolutional network","volume":"36","author":"Li","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.patcog.2021.107982_bib0029","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1016\/j.patcog.2018.02.006","article-title":"A deeply supervised residual network for HEp-2 cell classification via cross-Modal transfer learning","volume":"79","author":"Lei","year":"2018","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.patcog.2021.107982_bib0030","first-page":"20","article-title":"A deep feature extraction method for HEp-2 cell image classification","volume":"8","author":"Vununu","year":"2019","journal-title":"Electronics (Basel)"},{"key":"10.1016\/j.patcog.2021.107982_bib0031","series-title":"Proceedings of the 23rd International Conference on Pattern Recognition (ICPR)","first-page":"77","article-title":"Deep Convolutional Neural Network Based HEp-2 Cell Classification","author":"Jia","year":"2016"},{"key":"10.1016\/j.patcog.2021.107982_bib0032","doi-asserted-by":"crossref","first-page":"103542","DOI":"10.1016\/j.compbiomed.2019.103542","article-title":"Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images","volume":"116","author":"Rodrigues","year":"2020","journal-title":"Comput. Biol. Med."},{"issue":"2","key":"10.1016\/j.patcog.2021.107982_bib0033","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1109\/JBHI.2016.2526603","article-title":"HEp-2 Cell image classification with deep convolutional neural networks","volume":"21","author":"Gao","year":"2016","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"3","key":"10.1016\/j.patcog.2021.107982_bib0034","first-page":"266","article-title":"HEp-Net: A Smaller And better deep-learning network for HEp-2 cell classification","volume":"7","author":"Li","year":"2019","journal-title":"Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization"},{"key":"10.1016\/j.patcog.2021.107982_sbref0035","series-title":"Rough sets: theoretical aspects of reasoning about data","author":"Pawlak","year":"1991"},{"key":"10.1016\/j.patcog.2021.107982_bib0036","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.patrec.2016.03.024","article-title":"A multi-Process system for HEp-2 cells classification based on SVM","volume":"82","author":"Cascio","year":"2016","journal-title":"Pattern Recognit. Lett."},{"issue":"2","key":"10.1016\/j.patcog.2021.107982_bib0037","doi-asserted-by":"crossref","first-page":"307","DOI":"10.3390\/app9020307","article-title":"An automatic HEp-2 specimen analysis system based on an active contours model and an SVM classification","volume":"9","author":"Cascio","year":"2019","journal-title":"Applied Sciences"},{"key":"10.1016\/j.patcog.2021.107982_bib0038","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.patrec.2016.07.013","article-title":"HEp-2 Staining pattern recognition at cell and specimen levels: datasets, algorithms and results","volume":"82","author":"Hobson","year":"2016","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2021.107982_sbref0039","series-title":"The nature of statistical learning theory","author":"Vapnik","year":"1995"},{"key":"10.1016\/j.patcog.2021.107982_bib0040","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1016\/j.artint.2010.04.018","article-title":"Positive approximation: an accelerator for attribute reduction in rough set theory","volume":"174","author":"Qian","year":"2010","journal-title":"Artif. Intell."},{"issue":"1","key":"10.1016\/j.patcog.2021.107982_bib0041","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/TKDE.2012.242","article-title":"A rough hypercuboid approach for feature selection in approximation spaces","volume":"26","author":"Maji","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2021.107982_bib0042","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/0022-0000(93)90048-2","article-title":"Variable precision rough set model","volume":"46","author":"Ziarko","year":"1993","journal-title":"J. Comput. Syst. Sci."},{"issue":"3","key":"10.1016\/j.patcog.2021.107982_bib0043","doi-asserted-by":"crossref","first-page":"408","DOI":"10.1016\/j.ijar.2010.09.006","article-title":"Rough set based maximum relevance-Maximum significance criterion and gene selection from microarray data","volume":"52","author":"Maji","year":"2011","journal-title":"Int. J. Approximate Reasoning"},{"issue":"10","key":"10.1016\/j.patcog.2021.107982_bib0044","doi-asserted-by":"crossref","first-page":"1878","DOI":"10.1109\/TMI.2013.2268163","article-title":"Benchmarking HEp-2 cells classification methods","volume":"32","author":"Foggia","year":"2013","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"10","key":"10.1016\/j.patcog.2021.107982_bib0045","doi-asserted-by":"crossref","first-page":"3834","DOI":"10.1016\/j.patcog.2012.04.003","article-title":"Discriminative features for texture description","volume":"45","author":"Guo","year":"2012","journal-title":"Pattern Recognit."},{"issue":"Mar","key":"10.1016\/j.patcog.2021.107982_bib0046","first-page":"643","article-title":"Learning algorithms for the classification restricted boltzmann machine","volume":"13","author":"Larochelle","year":"2012","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.patcog.2021.107982_bib0047","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"558","article-title":"Deep Texture Manifold for Ground Terrain Recognition","author":"Xue","year":"2018"},{"issue":"1","key":"10.1016\/j.patcog.2021.107982_bib0048","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.bbe.2019.11.004","article-title":"Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks","volume":"40","author":"To\u011fa\u00e7ar","year":"2020","journal-title":"Biocybernetics and Biomedical Engineering"},{"key":"10.1016\/j.patcog.2021.107982_bib0049","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.patcog.2015.09.015","article-title":"An automated pattern recognition system for classifying indirect immunofluorescence images of HEp-2 cells and specimens","volume":"51","author":"Manivannan","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2021.107982_bib0050","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.patcog.2018.05.005","article-title":"Deep cross residual network for HEp-2 cell staining pattern classification","volume":"82","author":"Shen","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2021.107982_bib0051","article-title":"Computer-Assisted classification patterns in autoimmune diagnostics: the AIDA project","author":"Elgaaied","year":"2016","journal-title":"Biomed Res. Int."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320321001692?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320321001692?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T10:24:21Z","timestamp":1672395861000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320321001692"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":51,"alternative-id":["S0031320321001692"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2021.107982","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Rough-Bayesian approach to select class-pair specific descriptors for HEp-2 cell staining pattern recognition","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2021.107982","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107982"}}