{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:20:43Z","timestamp":1732040443876},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001409","name":"Department of Science and Technology, Ministry of Science and Technology, India","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001409","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001843","name":"Science and Engineering Research Board","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001843","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001412","name":"Council of Scientific and Industrial Research, India","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001412","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.patcog.2021.107978","type":"journal-article","created":{"date-parts":[[2021,4,20]],"date-time":"2021-04-20T20:29:39Z","timestamp":1618950579000},"page":"107978","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":158,"special_numbering":"C","title":["Random vector functional link neural network based ensemble deep learning"],"prefix":"10.1016","volume":"117","author":[{"given":"Qiushi","family":"Shi","sequence":"first","affiliation":[]},{"given":"Rakesh","family":"Katuwal","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0901-5105","authenticated-orcid":false,"given":"P.N.","family":"Suganthan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5727-3697","authenticated-orcid":false,"given":"M.","family":"Tanveer","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7553","key":"10.1016\/j.patcog.2021.107978_bib0001","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.patcog.2021.107978_bib0002","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","article-title":"Deep learning in neural networks: an overview","volume":"61","author":"Schmidhuber","year":"2015","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2021.107978_bib0003","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1016\/j.asoc.2018.07.013","article-title":"On non-iterative learning algorithms with closed-form solution","volume":"70","author":"Suganthan","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.patcog.2021.107978_bib0004","series-title":"Advances in Neural Information Processing Systems 31","first-page":"3623","article-title":"Modern neural networks generalize on small data sets","author":"Olson","year":"2018"},{"key":"10.1016\/j.patcog.2021.107978_bib0005","series-title":"Advances in Neural Information Processing Systems 30","first-page":"971","article-title":"Self-normalizing neural networks","author":"Klambauer","year":"2017"},{"key":"10.1016\/j.patcog.2021.107978_bib0006","series-title":"Advances in Neural Information Processing Systems 31","first-page":"1379","article-title":"Regularization learning networks: deep learning for tabular datasets","author":"Shavitt","year":"2018"},{"key":"10.1016\/j.patcog.2021.107978_bib0007","doi-asserted-by":"crossref","first-page":"107239","DOI":"10.1016\/j.asoc.2021.107239","article-title":"On the origins of randomization-based feedforward neural networks","author":"Suganthan","year":"2021","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.patcog.2021.107978_bib0008","series-title":"Proceedings of the International Conference on neural Information Processing (ICONIP\u201995)","first-page":"1041","article-title":"An exact supervised learning for a three-layer supervised neural network","author":"Guo","year":"1995"},{"key":"10.1016\/j.patcog.2021.107978_bib0009","unstructured":"P.\u00a0Guo, A vest of the pseudoinverse learning algorithm, in: arXiv:https:\/\/arxiv.org\/pdf\/1805.07828, 2018, pp. 1\u20135."},{"issue":"2","key":"10.1016\/j.patcog.2021.107978_bib0010","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1177\/105971230601400204","article-title":"Structure and dynamics of random recurrent neural networks","volume":"14","author":"Berry","year":"2006","journal-title":"Adapt. Behav."},{"key":"10.1016\/j.patcog.2021.107978_bib0011","series-title":"Pattern Recognition, 1992. Vol. II. Conference B: Pattern Recognition Methodology and Systems, Proceedings., 11th IAPR International Conference on","first-page":"1","article-title":"Feedforward neural networks with random weights","author":"Schmidt","year":"1992"},{"issue":"1","key":"10.1016\/j.patcog.2021.107978_bib0012","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/0952-1976(94)00056-S","article-title":"Random activation weight neural net (rawn) for fast non-iterative training","volume":"8","author":"Braake","year":"1995","journal-title":"Eng. Appl. Artif.Intell."},{"key":"10.1016\/j.patcog.2021.107978_sbref0013","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.neunet.2012.09.020","article-title":"The no-prop algorithm: a new learning algorithm for multilayer neural networks","volume":"37","author":"Widrow","year":"2013","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2021.107978_bib0014","first-page":"459","article-title":"Chapter 9 Approximate Nonlinear Forecasting Methods","volume":"1","author":"White","year":"2006"},{"issue":"5","key":"10.1016\/j.patcog.2021.107978_bib0015","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1109\/2.144401","article-title":"Functional-link net computing: theory, system architecture, and functionalities","volume":"25","author":"Pao","year":"1992","journal-title":"IEEE Comput."},{"issue":"10","key":"10.1016\/j.patcog.2021.107978_bib0016","doi-asserted-by":"crossref","first-page":"3243","DOI":"10.1109\/TCYB.2016.2588526","article-title":"Visual tracking with convolutional random vector functional link network","volume":"47","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Cybern."},{"issue":"4","key":"10.1016\/j.patcog.2021.107978_bib0017","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1109\/MCI.2017.2742867","article-title":"Benchmarking ensemble classifiers with novel co-trained kernel ridge regression and random vector functional link ensembles [research frontier]","volume":"12","author":"Zhang","year":"2017","journal-title":"IEEE Comput. Intell. Mag."},{"key":"10.1016\/j.patcog.2021.107978_bib0018","doi-asserted-by":"crossref","first-page":"1146","DOI":"10.1016\/j.asoc.2017.09.020","article-title":"An ensemble of decision trees with random vector functional link networks for multi-class classification","volume":"70","author":"Katuwal","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.patcog.2021.107978_bib0019","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1016\/j.asoc.2017.10.010","article-title":"A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression","volume":"70","author":"Vukovi\u0107","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.patcog.2021.107978_bib0020","doi-asserted-by":"crossref","first-page":"1097","DOI":"10.1016\/j.asoc.2017.02.013","article-title":"A non-iterative decomposition-ensemble learning paradigm using rvfl network for crude oil price forecasting","volume":"70","author":"Tang","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.patcog.2021.107978_bib0021","doi-asserted-by":"crossref","first-page":"1122","DOI":"10.1016\/j.asoc.2017.08.055","article-title":"Indian summer monsoon rainfall prediction: A comparison of iterative and non-iterative approaches","volume":"70","author":"Dash","year":"2018","journal-title":"Appl. Soft Comput."},{"issue":"2","key":"10.1016\/j.patcog.2021.107978_bib0022","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/0925-2312(94)90053-1","article-title":"Learning and generalization characteristics of the random vector functional-link net","volume":"6","author":"Pao","year":"1994","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2021.107978_bib0023","series-title":"2018 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Enhancing multi-class classification of random forest using random vector functional neural network and oblique decision surfaces","author":"Katuwal","year":"2018"},{"key":"10.1016\/j.patcog.2021.107978_bib0024","doi-asserted-by":"crossref","first-page":"1094","DOI":"10.1016\/j.ins.2015.09.025","article-title":"A comprehensive evaluation of random vector functional link networks","volume":"367\u2013368","author":"Zhang","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.patcog.2021.107978_bib0025","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1016\/j.ins.2015.11.039","article-title":"Random vector functional link network for short-term electricity load demand forecasting","volume":"367\u2013368","author":"Ren","year":"2016","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.patcog.2021.107978_sbref0026","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2021.107978_bib0027","series-title":"An Introduction to Computational Learning Theory","author":"Kearns","year":"1994"},{"key":"10.1016\/j.patcog.2021.107978_bib0028","series-title":"Advances in Neural Information Processing Systems","first-page":"550","article-title":"Residual networks behave like ensembles of relatively shallow networks","author":"Veit","year":"2016"},{"key":"10.1016\/j.patcog.2021.107978_bib0029","unstructured":"Huang et\u00a0al.(2017)Huang, Li, Pleiss, Liu, Hopcroft, and Weinberger G. Huang, Y. Li, G. Pleiss, Z. Liu, J.E. Hopcroft, K.Q. Weinberger, Snapshot ensembles: train 1, get m for free, arXiv:1704.00109(2017)."},{"issue":"1","key":"10.1016\/j.patcog.2021.107978_bib0030","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1109\/MCI.2015.2471235","article-title":"Ensemble classification and regression-recent developments, applications and future directions [review article]","volume":"11","author":"Ren","year":"2016","journal-title":"IEEE Comput. Intell. Mag."},{"key":"10.1016\/j.patcog.2021.107978_bib0031","doi-asserted-by":"crossref","first-page":"105854","DOI":"10.1016\/j.asoc.2019.105854","article-title":"Stacked autoencoder based deep random vector functional link neural network for classification","author":"Katuwal","year":"2019","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.patcog.2021.107978_bib0032","unstructured":"Katuwal et\u00a0al.(2019)Katuwal, Suganthan, and Tanveer R. Katuwal, P.N. Suganthan, M. Tanveer, Random vector functional link neural network based ensemble deep learning, arXiv:1907.00350(2019)."},{"issue":"4","key":"10.1016\/j.patcog.2021.107978_bib0033","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1109\/TNNLS.2015.2424995","article-title":"Extreme learning machine for multilayer perceptron","volume":"27","author":"Tang","year":"2016","journal-title":"IEEE Trans.Neural Netw. Learn.Syst."},{"key":"10.1016\/j.patcog.2021.107978_sbref0034","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.neucom.2016.12.089","article-title":"Deep reservoir computing: a critical experimental analysis","volume":"268","author":"Gallicchio","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2021.107978_bib0035","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2019.01.007","article-title":"An unsupervised parameter learning model for RVFL neural network","volume":"112","author":"Zhang","year":"2019","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2021.107978_bib0036","series-title":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN\u201994)","first-page":"840","article-title":"A modified backpropagation algorithm","volume":"2","author":"Verma","year":"1994"},{"issue":"1","key":"10.1016\/j.patcog.2021.107978_bib0037","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1137\/080716542","article-title":"A fast iterative shrinkage-thresholding algorithm for linear inverse problems","volume":"2","author":"Beck","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"issue":"1","key":"10.1016\/j.patcog.2021.107978_bib0038","first-page":"3299","article-title":"Divide and conquer kernel ridge regression: adistributed algorithm with minimax optimal rates","volume":"16","author":"Zhang","year":"2015","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2021.107978_bib0039","first-page":"3133","article-title":"Do we need hundreds of classifiers to solve real world classification problems?","volume":"15","author":"Fern\u00e1ndez-Delgado","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2021.107978_bib0040","doi-asserted-by":"crossref","first-page":"107078","DOI":"10.1016\/j.patcog.2019.107078","article-title":"Heterogeneous oblique random forest","volume":"99","author":"Katuwal","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2021.107978_bib0041","series-title":"The IEEE International Conference on Computer Vision (ICCV)","article-title":"Delving deep into rectifiers: surpassing human-level performance on imagenet classification","author":"He","year":"2015"},{"key":"10.1016\/j.patcog.2021.107978_bib0042","series-title":"Advances in Neural Information Processing Systems 29","first-page":"901","article-title":"Weight normalization: a simple reparameterization to accelerate training of deep Neural Netw.","author":"Salimans","year":"2016"},{"key":"10.1016\/j.patcog.2021.107978_bib0043","series-title":"Advances in Neural Information Processing Systems 28","first-page":"2377","article-title":"Training very deep networks","author":"Srivastava","year":"2015"},{"key":"10.1016\/j.patcog.2021.107978_bib0044","unstructured":"Ba et\u00a0al.(2016)Ba, Kiros, and Hinton J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization, arXiv:1607.06450(2016)."},{"key":"10.1016\/j.patcog.2021.107978_bib0045","unstructured":"S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift (2015) 448\u2013456."},{"key":"10.1016\/j.patcog.2021.107978_bib0046","series-title":"The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320321001655?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320321001655?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,30]],"date-time":"2022-12-30T05:23:49Z","timestamp":1672377829000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320321001655"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":46,"alternative-id":["S0031320321001655"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2021.107978","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Random vector functional link neural network based ensemble deep learning","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2021.107978","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107978"}}