{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:39:15Z","timestamp":1726850355174},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,2,1]],"date-time":"2021-02-01T00:00:00Z","timestamp":1612137600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100010245","name":"National Social Science Foundation of China","doi-asserted-by":"publisher","award":["19BTJ011"],"id":[{"id":"10.13039\/501100010245","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["81770584","81570504"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002822","name":"Central South University","doi-asserted-by":"publisher","award":["2019zzts213"],"id":[{"id":"10.13039\/501100002822","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2021,2]]},"DOI":"10.1016\/j.patcog.2020.107613","type":"journal-article","created":{"date-parts":[[2020,8,26]],"date-time":"2020-08-26T15:31:57Z","timestamp":1598455917000},"page":"107613","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":126,"special_numbering":"C","title":["Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays"],"prefix":"10.1016","volume":"110","author":[{"given":"Zheng","family":"Wang","sequence":"first","affiliation":[]},{"given":"Ying","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Yong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Fanggen","family":"Lu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6658-2187","authenticated-orcid":false,"given":"Muzhou","family":"Hou","sequence":"additional","affiliation":[]},{"given":"Xiaowei","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"13","key":"10.1016\/j.patcog.2020.107613_bib0001","doi-asserted-by":"crossref","first-page":"1199","DOI":"10.1056\/NEJMoa2001316","article-title":"Early transmission dynamics in wuhan, china, of novel coronavirus infected pneumonia","volume":"382","author":"Li","year":"2020","journal-title":"N. Engl. J. Med."},{"key":"10.1016\/j.patcog.2020.107613_bib0002","first-page":"200905","article-title":"Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct","author":"Li","year":"2020","journal-title":"Radiology"},{"key":"10.1016\/j.patcog.2020.107613_bib0003","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1056\/NEJMoa2001017","article-title":"A novel coronavirus from patients with pneumonia in china, 2019","volume":"382","author":"Zhu","year":"2020","journal-title":"N. Engl. J. Med."},{"issue":"1","key":"10.1016\/j.patcog.2020.107613_bib0004","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1148\/radiol.2020200230","article-title":"Ct imaging features of 2019 novel coronavirus (2019-ncov)","volume":"295","author":"Chung","year":"2020","journal-title":"Radiology"},{"issue":"4","key":"10.1016\/j.patcog.2020.107613_bib0005","doi-asserted-by":"crossref","first-page":"390","DOI":"10.5152\/dir.2015.15221","article-title":"Comparison of effective radiation doses from x-ray, ct, and pet\/ct in pediatric patients with neuroblastoma using a dose monitoring program","volume":"22","author":"Kim","year":"2016","journal-title":"Diagn. Int. Radiol."},{"key":"10.1016\/j.patcog.2020.107613_sbref0006","article-title":"ully convolutional networks for semantic segmentation","volume":"39","author":"Shelhamer","year":"2016","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.patcog.2020.107613_bib0007","series-title":"International Conference on Learning Representations","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2015"},{"key":"10.1016\/j.patcog.2020.107613_bib0008","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.patcog.2020.107613_bib0009","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2818","article-title":"Rethinking the inception architecture for computer vision","author":"Szegedy","year":"2016"},{"key":"10.1016\/j.patcog.2020.107613_bib0010","series-title":"30th IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1800","article-title":"Xception: Deep learning with depthwise separable convolutions","author":"Chollet","year":"2017"},{"key":"10.1016\/j.patcog.2020.107613_bib0011","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2018.07.022","article-title":"Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks","volume":"84","author":"Gecer","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107613_bib0012","series-title":"Medical Imaging 2018: Image Processing","first-page":"785","article-title":"Exudate segmentation using fully convolutional neural networks and inception modules","volume":"10574","author":"Chudzik","year":"2018"},{"key":"10.1016\/j.patcog.2020.107613_bib0013","doi-asserted-by":"crossref","first-page":"107502","DOI":"10.1016\/j.patcog.2020.107502","article-title":"Multi-label classification of multi-modality skin lesion via hyper-connected convolutional neural network","volume":"107","author":"Bi","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107613_bib0014","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.patcog.2018.05.026","article-title":"Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker","volume":"83","author":"Zhang","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107613_bib0015","doi-asserted-by":"crossref","first-page":"103792","DOI":"10.1016\/j.compbiomed.2020.103792","article-title":"Automated detection of covid-19 cases using deep neural networks with x-ray images","volume":"28","author":"Ozturk","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.patcog.2020.107613_bib0016","doi-asserted-by":"crossref","first-page":"105581","DOI":"10.1016\/j.cmpb.2020.105581","article-title":"Coronet: a deep neural network for detection and diagnosis of covid-19 from chest x-ray images","volume":"196","author":"Khan","year":"2020","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.patcog.2020.107613_bib0017","doi-asserted-by":"crossref","unstructured":"A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks, 2020.","DOI":"10.1007\/s10044-021-00984-y"},{"key":"10.1016\/j.patcog.2020.107613_bib0018","first-page":"1","article-title":"Artificial intelligence-enabled rapid diagnosis of patients with covid-19","author":"Mei","year":"2020","journal-title":"Nat. Med."},{"key":"10.1016\/j.patcog.2020.107613_bib0019","first-page":"201491","article-title":"Ai augmentation of radiologist performance in distinguishing covid-19 from pneumonia of other etiology on chest ct","author":"Bai","year":"2020","journal-title":"Radiology"},{"key":"10.1016\/j.patcog.2020.107613_bib0020","series-title":"38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","first-page":"643","article-title":"Vessel extraction in x-ray angiograms using deep learning","volume":"2016","author":"Nasr-Esfahani","year":"2016"},{"issue":"11","key":"10.1016\/j.patcog.2020.107613_bib0021","doi-asserted-by":"crossref","first-page":"1002686","DOI":"10.1371\/journal.pmed.1002686","article-title":"Deep learning for chest radiograph diagnosis: aretrospective comparison of the chexnext algorithm to practicing radiologists","volume":"15","author":"Rajpurkar","year":"2018","journal-title":"PLoS Med."},{"key":"10.1016\/j.patcog.2020.107613_bib0022","unstructured":"R.S. of North America, Rsna pneumonia detection challenge, 2019, https:\/\/www.kaggle.com\/c\/rsna-pneumonia-detection-challenge\/data."},{"key":"10.1016\/j.patcog.2020.107613_bib0023","unstructured":"J.P. Cohen, P. Morrison, L. Dao, Covid-19 image data collection, 2020."},{"key":"10.1016\/j.patcog.2020.107613_bib0024","article-title":"Discriminative unsupervised feature learning with exemplar convolutional neural networks","volume":"1","author":"Dosovitskiy","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2020.107613_bib0025","series-title":"2014 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"580","article-title":"Rich feature hierarchies for accurate object detection and semantic segmentation","author":"Girshick","year":"2014"},{"key":"10.1016\/j.patcog.2020.107613_bib0026","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"936","article-title":"Feature pyramid networks for object detection","author":"Lin","year":"2017"},{"key":"10.1016\/j.patcog.2020.107613_bib0027","series-title":"2017 IEEE International Conference on Computer Vision (ICCV)","first-page":"2999","article-title":"Focal loss for dense object detection","author":"Lin","year":"2017"},{"key":"10.1016\/j.patcog.2020.107613_bib0028","series-title":"Computer Vision \u2013 ECCV 2014","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"},{"key":"10.1016\/j.patcog.2020.107613_bib0029","doi-asserted-by":"crossref","unstructured":"F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, X. Tang, Residual attention network for image classification, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6450\u20136458.","DOI":"10.1109\/CVPR.2017.683"},{"key":"10.1016\/j.patcog.2020.107613_bib0030","unstructured":"C. Szegedy, A. Toshev, D. Erhan, Deep neural networks for object detection, in: Proceedings of the 26th International Conference on Neural Information Processing Systems, volume\u00a0 2, pp. 2553\u20132561."},{"key":"10.1016\/j.patcog.2020.107613_bib0031","article-title":"Adam: a method for stochastic optimization","volume":"1","author":"Kingma","year":"2014","journal-title":"Int. Confer. Learn.Represent."},{"key":"10.1016\/j.patcog.2020.107613_bib0032","unstructured":"N. Ketkar, Deep Learning with Python: A Hands-on Introduction, pp. 97\u2013111."},{"key":"10.1016\/j.patcog.2020.107613_bib0033","unstructured":"N. Ketkar, Deep Learning with Python: A Hands-on Introduction, pp. 159\u2013194."},{"key":"10.1016\/j.patcog.2020.107613_bib0034","unstructured":"E.E.-D. Hemdan, M. Shouman, M. Karar, Covidx-net: A framework of deep learning classifiers to diagnose COVID-19 in x-ray images, 2020."},{"key":"10.1016\/j.patcog.2020.107613_bib0035","series-title":"2017 IEEE International Conference on Computer Vision (ICCV)","first-page":"618","article-title":"Grad-cam: Visual explanations from deep networks via gradient-based localization","author":"Selvaraju","year":"2017"},{"key":"10.1016\/j.patcog.2020.107613_bib0036","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.cviu.2017.10.001","article-title":"Human attention in visual question answering: do humans and deep networks look at the same regions?","volume":"163","author":"Das","year":"2017","journal-title":"Comput. Vision Image Understanding"},{"key":"10.1016\/j.patcog.2020.107613_bib0037","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1007\/s40475-020-00201-6","article-title":"The sars-cov-2 vaccine pipeline: an overview","volume":"7","author":"Chen","year":"2020","journal-title":"Curr. Trop. Med. Rep."},{"issue":"5","key":"10.1016\/j.patcog.2020.107613_bib0038","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/S1473-3099(20)30120-1","article-title":"An interactive web-based dashboard to track COVID-19 in real time","volume":"20","author":"Dong","year":"2020","journal-title":"Lancet Infect. Dis."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320304167?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320304167?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,11,10]],"date-time":"2022-11-10T03:05:38Z","timestamp":1668049538000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320320304167"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2]]},"references-count":38,"alternative-id":["S0031320320304167"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107613","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2021,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107613","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107613"}}