{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:26:41Z","timestamp":1742804801416,"version":"3.37.3"},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100012246","name":"Jiangsu Higher Education Institutions","doi-asserted-by":"publisher","award":["XYDXX-042","BRA2017455"],"id":[{"id":"10.13039\/501100012246","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2021,1]]},"DOI":"10.1016\/j.patcog.2020.107592","type":"journal-article","created":{"date-parts":[[2020,8,14]],"date-time":"2020-08-14T01:23:06Z","timestamp":1597368186000},"page":"107592","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Solving large-scale support vector ordinal regression with asynchronous parallel coordinate descent algorithms"],"prefix":"10.1016","volume":"109","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-7165-3143","authenticated-orcid":false,"given":"Bin","family":"Gu","sequence":"first","affiliation":[]},{"given":"Xiang","family":"Geng","sequence":"additional","affiliation":[]},{"given":"Wanli","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Yingying","family":"Shan","sequence":"additional","affiliation":[]},{"given":"Yufang","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Zhijie","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Guansheng","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2020.107592_bib0001","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.asoc.2013.07.017","article-title":"An organ allocation system for liver transplantation based on ordinal regression","volume":"14","author":"P\u00e9rez-Ortiz","year":"2014","journal-title":"Appl. Soft Comput."},{"issue":"8","key":"10.1016\/j.patcog.2020.107592_bib0002","doi-asserted-by":"crossref","first-page":"1800","DOI":"10.1016\/j.cor.2011.06.023","article-title":"A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach","volume":"39","author":"Kim","year":"2012","journal-title":"Comput. Oper. Res."},{"key":"10.1016\/j.patcog.2020.107592_bib0003","article-title":"Introducing LETOR 4.0 datasets","volume":"abs\/1306.2597","author":"Qin","year":"2013","journal-title":"CoRR"},{"issue":"3","key":"10.1016\/j.patcog.2020.107592_bib0004","doi-asserted-by":"crossref","first-page":"628","DOI":"10.1016\/j.patcog.2012.09.011","article-title":"Facial age estimation based on label-sensitive learning and age-oriented regression","volume":"46","author":"Chao","year":"2013","journal-title":"Pattern Recognit."},{"issue":"5","key":"10.1016\/j.patcog.2020.107592_bib0005","doi-asserted-by":"crossref","first-page":"1539","DOI":"10.1016\/j.patcog.2007.08.013","article-title":"Local prediction of non-liner time series using support vector regression","volume":"41","author":"Lau","year":"2008","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107592_bib0006","doi-asserted-by":"crossref","unstructured":"Z.\u00a0Zhai, B.\u00a0Gu, X.\u00a0Li, H.\u00a0Huang, Safe sample screening for robust support vector machine, arXiv:1912.11217 (2019).","DOI":"10.1609\/aaai.v34i04.6182"},{"issue":"3","key":"10.1016\/j.patcog.2020.107592_bib0007","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.patcog.2020.107592_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2016.04.017","article-title":"Structural nonparallel support vector machine for pattern recognition","author":"Chen","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107592_bib0009","doi-asserted-by":"crossref","unstructured":"X.\u00a0Geng, B.\u00a0Gu, X.\u00a0Li, W.\u00a0Shi, G.\u00a0Zheng, H.\u00a0Huang, Scalable semi-supervised svm via triply stochastic gradients, arXiv:1907.11584 (2019).","DOI":"10.24963\/ijcai.2019\/328"},{"key":"10.1016\/j.patcog.2020.107592_bib0010","doi-asserted-by":"crossref","unstructured":"R. Herbrich, T. Graepel, K. Obermayer, Large margin rank boundaries for ordinal regression (2000).","DOI":"10.7551\/mitpress\/1113.003.0010"},{"issue":"3","key":"10.1016\/j.patcog.2020.107592_bib0011","doi-asserted-by":"crossref","first-page":"792","DOI":"10.1162\/neco.2007.19.3.792","article-title":"Support vector ordinal regression","volume":"19","author":"Chu","year":"2007","journal-title":"Neural Comput."},{"issue":"Jul","key":"10.1016\/j.patcog.2020.107592_bib0012","first-page":"1019","article-title":"Gaussian processes for ordinal regression","volume":"6","author":"Chu","year":"2005","journal-title":"J. Mach. Learn. Res."},{"issue":"6","key":"10.1016\/j.patcog.2020.107592_bib0013","doi-asserted-by":"crossref","first-page":"906","DOI":"10.1109\/TKDE.2009.170","article-title":"Kernel discriminant learning for ordinal regression","volume":"22","author":"Sun","year":"2010","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2020.107592_bib0014","doi-asserted-by":"crossref","unstructured":"R. Herbrich, T. Graepel, K. Obermayer, Support vector learning for ordinal regression (1999).","DOI":"10.1049\/cp:19991091"},{"key":"10.1016\/j.patcog.2020.107592_bib0015","series-title":"Advances in Neural Information Processing Systems","first-page":"961","article-title":"Ranking with large margin principle: two approaches","author":"Shashua","year":"2003"},{"issue":"1","key":"10.1016\/j.patcog.2020.107592_bib0016","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1109\/TKDE.2015.2457911","article-title":"Ordinal regression methods: survey and experimental study","volume":"28","author":"Guti\u00e9rrez","year":"2016","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"7","key":"10.1016\/j.patcog.2020.107592_bib0017","doi-asserted-by":"crossref","first-page":"1403","DOI":"10.1109\/TNNLS.2014.2342533","article-title":"Incremental support vector learning for ordinal regression.","volume":"26","author":"Gu","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn.Syst."},{"issue":"1","key":"10.1016\/j.patcog.2020.107592_bib0018","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/S0893-6080(00)00077-0","article-title":"Optimal control by least squares support vector machines","volume":"14","author":"Suykens","year":"2001","journal-title":"Neural Netw."},{"issue":"3","key":"10.1016\/j.patcog.2020.107592_bib0019","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1016\/j.neunet.2009.07.002","article-title":"Tsvr: an efficient twin support vector machine for regression","volume":"23","author":"Peng","year":"2010","journal-title":"Neural Netw."},{"issue":"10\u201311","key":"10.1016\/j.patcog.2020.107592_bib0020","doi-asserted-by":"crossref","first-page":"2678","DOI":"10.1016\/j.patcog.2011.03.031","article-title":"Tpmsvm: a novel twin parametric-margin support vector machine for pattern recognition","volume":"44","author":"Peng","year":"2011","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107592_bib0021","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.neunet.2017.11.008","article-title":"A regularization path algorithm for support vector ordinal regression","volume":"98","author":"Gu","year":"2018","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2020.107592_bib0022","series-title":"Statistical Learning Theory. 1998","volume":"3","author":"Vapnik","year":"1998"},{"key":"10.1016\/j.patcog.2020.107592_bib0023","doi-asserted-by":"crossref","unstructured":"W.\u00a0Shi, B.\u00a0Gu, X.\u00a0Li, X.\u00a0Geng, H.\u00a0Huang, Quadruply stochastic gradients for large scale nonlinear semi-supervised auc optimization, arXiv:1907.12416 (2019).","DOI":"10.24963\/ijcai.2019\/474"},{"key":"10.1016\/j.patcog.2020.107592_bib0024","series-title":"UAI","article-title":"Triply stochastic gradients on multiple kernel learning.","author":"Li","year":"2017"},{"key":"10.1016\/j.patcog.2020.107592_bib0025","series-title":"International Conference on Neural Information Processing Systems","first-page":"661","article-title":"Using the nystro\u0235m method to speed up kernel machines","author":"Williams","year":"2000"},{"key":"10.1016\/j.patcog.2020.107592_bib0026","series-title":"Advances in Neural Iinformation Processing Systems","first-page":"1177","article-title":"Random features for large-scale kernel machines","author":"Rahimi","year":"2008"},{"issue":"Dec","key":"10.1016\/j.patcog.2020.107592_bib0027","first-page":"2153","article-title":"On the nystr\u00f6m method for approximating a gram matrix for improved kernel-based learning","volume":"6","author":"Drineas","year":"2005","journal-title":". Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2020.107592_bib0028","first-page":"1359","article-title":"Randomized nonlinear component analysis","volume":"4","author":"Lopez-Paz","year":"2014","journal-title":"Comput. Sci."},{"key":"10.1016\/j.patcog.2020.107592_bib0029","series-title":"Thirty-Second AAAI Conference on Artificial Intelligence","article-title":"Asynchronous doubly stochastic sparse kernel learning","author":"Gu","year":"2018"},{"issue":"1","key":"10.1016\/j.patcog.2020.107592_bib0030","first-page":"285","article-title":"An asynchronous parallel stochastic coordinate descent algorithm","volume":"16","author":"Liu","year":"2015","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"10.1016\/j.patcog.2020.107592_bib0031","first-page":"51","article-title":"Asynchronous stochastic convex optimization","volume":"18","author":"Duchi","year":"2015","journal-title":"Mathematics"},{"key":"10.1016\/j.patcog.2020.107592_bib0032","series-title":"Advances In Neural Information Processing Systems","first-page":"4682","article-title":"Asynchronous parallel greedy coordinate descent","author":"You","year":"2016"},{"key":"10.1016\/j.patcog.2020.107592_bib0033","series-title":"Proceedings of the 25th international conference on Machine learning","first-page":"408","article-title":"A dual coordinate descent method for large-scale linear svm","author":"Hsieh","year":"2008"},{"issue":"3","key":"10.1016\/j.patcog.2020.107592_bib0034","first-page":"27","article-title":"Libsvm: a library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Trans. Intell. Syst.Technol. (TIST)"},{"key":"10.1016\/j.patcog.2020.107592_bib0035","series-title":"IJCAI","first-page":"2170","article-title":"Accelerated asynchronous greedy coordinate descent algorithm for svms.","author":"Gu","year":"2018"},{"issue":"5","key":"10.1016\/j.patcog.2020.107592_bib0036","doi-asserted-by":"crossref","first-page":"1329","DOI":"10.1162\/NECO_a_00265","article-title":"Reduction from cost-sensitive ordinal ranking to weighted binary classification","volume":"24","author":"Lin","year":"2012","journal-title":"Neural Comput."},{"key":"10.1016\/j.patcog.2020.107592_bib0037","series-title":"Advances in Neural Information Processing Systems","first-page":"865","article-title":"Ordinal regression by extended binary classification","author":"Li","year":"2007"},{"issue":"1","key":"10.1016\/j.patcog.2020.107592_bib0038","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.patcog.2007.05.018","article-title":"A survey of kernel and spectral methods for clustering","volume":"41","author":"Filippone","year":"2008","journal-title":"Pattern Recognit."},{"issue":"7","key":"10.1016\/j.patcog.2020.107592_bib0039","doi-asserted-by":"crossref","first-page":"1237","DOI":"10.1016\/j.patcog.2008.11.024","article-title":"Gaussian kernel optimization for pattern classification","volume":"42","author":"Jie","year":"2009","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.patcog.2020.107592_bib0040","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1016\/S0893-6080(99)00032-5","article-title":"Improving support vector machine classifiers by modifying kernel functions","volume":"12","author":"Amari","year":"1999","journal-title":"Neural Netw."},{"year":"1999","series-title":"Nonlinear Programming","author":"Bertsekas","key":"10.1016\/j.patcog.2020.107592_bib0041"},{"issue":"1","key":"10.1016\/j.patcog.2020.107592_bib0042","first-page":"88","article-title":"Sequential minimal optimization: a fast algorithm for training support vector machines","volume":"3","author":"John","year":"1998","journal-title":"MSRTR"},{"key":"10.1016\/j.patcog.2020.107592_bib0043","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.neunet.2018.07.015","article-title":"Incremental sparse bayesian ordinal regression","volume":"106","author":"Li","year":"2018","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2020.107592_bib0044","doi-asserted-by":"crossref","first-page":"352","DOI":"10.1016\/j.neunet.2019.06.015","article-title":"Efficient inexact proximal gradient algorithms for structured sparsity-inducing norm","volume":"118","author":"Gu","year":"2019","journal-title":"Neural Netw."},{"issue":"4","key":"10.1016\/j.patcog.2020.107592_bib0045","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1007\/s10791-009-9123-y","article-title":"Letor: a benchmark collection for research on learning to rank for information retrieval","volume":"13","author":"Qin","year":"2010","journal-title":"Inf. Retr. Boston"},{"key":"10.1016\/j.patcog.2020.107592_bib0046","article-title":"Introducing letor 4.0 datasets","author":"Qin","year":"2013","journal-title":"Comput. Sci."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320303952?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320303952?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T20:02:16Z","timestamp":1723406536000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320320303952"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1]]},"references-count":46,"alternative-id":["S0031320320303952"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107592","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2021,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Solving large-scale support vector ordinal regression with asynchronous parallel coordinate descent algorithms","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107592","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107592"}}