{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:04:44Z","timestamp":1728176684266},"reference-count":58,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61772344","61811530324","61732011","61871270","61402460"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2021,1]]},"DOI":"10.1016\/j.patcog.2020.107583","type":"journal-article","created":{"date-parts":[[2020,8,8]],"date-time":"2020-08-08T10:54:08Z","timestamp":1596884048000},"page":"107583","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":54,"special_numbering":"C","title":["Active k-labelsets ensemble for multi-label classification"],"prefix":"10.1016","volume":"109","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2586-5604","authenticated-orcid":false,"given":"Ran","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7484-7261","authenticated-orcid":false,"given":"Sam","family":"Kwong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2948-6468","authenticated-orcid":false,"given":"Xu","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3907-6550","authenticated-orcid":false,"given":"Yuheng","family":"Jia","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.patcog.2020.107583_bib0001","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1007\/BF00116828","article-title":"Queries and concept learning","volume":"2","author":"Angluin","year":"1988","journal-title":"Mach. Learn."},{"issue":"10","key":"10.1016\/j.patcog.2020.107583_bib0002","doi-asserted-by":"crossref","first-page":"2385","DOI":"10.1162\/089976600300014980","article-title":"Generalized discriminant analysis using a kernel approach","volume":"12","author":"Baudat","year":"2000","journal-title":"Neural Comput."},{"issue":"9","key":"10.1016\/j.patcog.2020.107583_bib0003","doi-asserted-by":"crossref","first-page":"1757","DOI":"10.1016\/j.patcog.2004.03.009","article-title":"Learning multi-label scene classification","volume":"37","author":"Boutella","year":"2004","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107583_bib0004","series-title":"Proc. 2019 IEEE International Conference on Bioinformatics and Biomedicine","first-page":"1436","article-title":"An ensemble framework with l21-norm regularized hypergraph laplacian multi-label learning for clinical data prediction","author":"Cao","year":"2019"},{"issue":"107164","key":"10.1016\/j.patcog.2020.107583_bib0005","article-title":"Semi-supervised robust deep neural networks for multi-label image classification","volume":"100","author":"Cevikalp","year":"2020","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107583_bib0006","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.neucom.2014.08.091","article-title":"Addressing imbalance in multilabel classification: measures and random resampling algorithms","volume":"163","author":"Charte","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2020.107583_bib0007","doi-asserted-by":"crossref","first-page":"50330","DOI":"10.1109\/ACCESS.2020.2979787","article-title":"A comprehensive and didactic review on multilabel learning software tools","volume":"8","author":"Charte","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.patcog.2020.107583_bib0008","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.neucom.2018.02.011","article-title":"Tips, guidelines and tools for managing multi-label datasets: the mldr.datasets R package and the cometa data repository","volume":"289","author":"Charte","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2020.107583_bib0009","series-title":"Proc. 2016 IJCNN","first-page":"1458","article-title":"Enhancing multi-label classification based on local label constraints and classifier chains","author":"Chen","year":"2016"},{"issue":"2","key":"10.1016\/j.patcog.2020.107583_bib0010","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1007\/BF00993277","article-title":"Improving generalization with active learning","volume":"15","author":"Cohn","year":"1994","journal-title":"Mach. Learn."},{"key":"10.1016\/j.patcog.2020.107583_bib0011","series-title":"2010 ICML","first-page":"279","article-title":"Bayes optimal multilabel classification via probabilistic classifier chains","author":"Dembczynski","year":"2010"},{"key":"10.1016\/j.patcog.2020.107583_bib0012","series-title":"Introduction to Statistical Pattern Recognition","author":"Fukunaga","year":"1990"},{"issue":"2","key":"10.1016\/j.patcog.2020.107583_bib0013","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1007\/s10994-008-5064-8","article-title":"Multilabel classification via calibrated label ranking","volume":"73","author":"F\u00fcrnkranz","year":"2008","journal-title":"Mach. Learn."},{"issue":"6","key":"10.1016\/j.patcog.2020.107583_bib0014","first-page":"411","article-title":"Multi-label learning: a review of the state of the art and ongoing research","volume":"4","author":"Gibaja","year":"2014","journal-title":"Wiley Interdiscip. Rev.: Data Min.Knowl. Discov."},{"key":"10.1016\/j.patcog.2020.107583_bib0015","series-title":"Proc. 25th AAAI","first-page":"374","article-title":"Adaptive large margin training for multilabel classification","author":"Guo","year":"2011"},{"key":"10.1016\/j.patcog.2020.107583_bib0016","series-title":"Multilabel Classification: Problem Analysis, Metrics and Techniques","author":"Herrera","year":"2016"},{"issue":"2","key":"10.1016\/j.patcog.2020.107583_bib0017","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/S0377-2217(02)00823-8","article-title":"Guidelines for the use of meta-heuristics in combinatorial optimization","volume":"151","author":"Hertz","year":"2003","journal-title":"Eur. J. Oper. Res."},{"issue":"1","key":"10.1016\/j.patcog.2020.107583_bib0018","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1006\/cviu.1998.0624","article-title":"Pattern classification with compact distribution maps","volume":"70","author":"Ho","year":"1998","journal-title":"Comput. Vis. Image Underst."},{"issue":"10","key":"10.1016\/j.patcog.2020.107583_bib0019","first-page":"289","article-title":"Complexity measures of supervised classification problems","volume":"24","author":"Ho","year":"2002","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2020.107583_bib0020","series-title":"IEEE Int. Conf. Multimedia & Expo","first-page":"1","article-title":"Group sensitive classifier chains for multi-label classification","author":"Huang","year":"2015"},{"key":"10.1016\/j.patcog.2020.107583_bib0021","series-title":"Proc. 26th AAAI","first-page":"949","article-title":"Multi-label learning by exploiting label correlations locally","author":"Huang","year":"2012"},{"issue":"10","key":"10.1016\/j.patcog.2020.107583_bib0022","doi-asserted-by":"crossref","first-page":"1936","DOI":"10.1109\/TPAMI.2014.2307881","article-title":"Active learning by querying informative and representative examples","volume":"36","author":"Huang","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2020.107583_bib0023","series-title":"Proc. 23rd ICPR","first-page":"438","article-title":"Fast random k-labelsets for large-scale multi-label classification","author":"Kimura","year":"2016"},{"issue":"12","key":"10.1016\/j.patcog.2020.107583_bib0024","doi-asserted-by":"crossref","first-page":"2740","DOI":"10.1109\/TNNLS.2015.2497318","article-title":"A boosting approach to exploit instance correlations for multi-instance classification","volume":"27","author":"Li","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.patcog.2020.107583_bib0025","doi-asserted-by":"crossref","first-page":"1679","DOI":"10.1109\/TKDE.2013.112","article-title":"Generalized k-labelsets ensemble for multi-label and cost-sensitive classification","volume":"26","author":"Lo","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2020.107583_bib0026","series-title":"Proc. 1999 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing IX","article-title":"Fisher discriminant analysis with kernels","author":"Mika","year":"1999"},{"key":"10.1016\/j.patcog.2020.107583_bib0027","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.inffus.2017.12.001","article-title":"Review of ensembles of multi-label classifiers: models, experimental study and prospects","volume":"44","author":"Moyano","year":"2018","journal-title":"Inform. Fusion"},{"key":"10.1016\/j.patcog.2020.107583_bib0028","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.patcog.2019.06.001","article-title":"Multi-label classification via incremental clustering on an evolving data stream","volume":"95","author":"Nguyen","year":"2019","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107583_bib0029","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.patcog.2019.01.007","article-title":"Multi-label classification via label correlation and first order feature dependance in a data stream","volume":"90","author":"Nguyen","year":"2019","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107583_bib0030","series-title":"Handbook of Combinatorial Optimization","author":"Pardalos","year":"2013"},{"key":"10.1016\/j.patcog.2020.107583_bib0031","series-title":"Proc. 2014 IEEE International Conference on Data Mining","first-page":"941","article-title":"Multi-label classification with meta-labels","author":"Read","year":"2004"},{"key":"10.1016\/j.patcog.2020.107583_bib0032","series-title":"Proc. 8th IEEE ICDM","first-page":"995","article-title":"Multi-label classification using ensembles of pruned sets","author":"Read","year":"2008"},{"key":"10.1016\/j.patcog.2020.107583_bib0033","series-title":"2009 Joint European Conf. Machine Learning and Knowledge Discovery in Databases","first-page":"254","article-title":"Classifier chains for multi-label classification","author":"Read","year":"2009"},{"issue":"3","key":"10.1016\/j.patcog.2020.107583_bib0034","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1007\/s10994-011-5256-5","article-title":"Classifier chains for multi-label classification","volume":"85","author":"Read","year":"2011","journal-title":"Mach. Learn."},{"key":"10.1016\/j.patcog.2020.107583_bib0035","series-title":"IEEE Int. Conf. Acoustics","first-page":"3457","article-title":"Efficient monte carlo optimization for multi-label classifier chains","author":"Read","year":"2013"},{"issue":"4","key":"10.1016\/j.patcog.2020.107583_bib0036","first-page":"46:1","article-title":"Evolutionary strategy to perform batch-mode active learning on multi-label data","volume":"6","author":"Reyes","year":"2018","journal-title":"ACM Trans. Intell. Syst. Tech."},{"key":"10.1016\/j.patcog.2020.107583_bib0037","doi-asserted-by":"crossref","first-page":"7507","DOI":"10.1016\/j.eswa.2014.06.015","article-title":"Ensemble methods for multi-label classification","volume":"41","author":"Rokach","year":"2014","journal-title":"Expert Syst. Appl."},{"issue":"7","key":"10.1016\/j.patcog.2020.107583_bib0038","doi-asserted-by":"crossref","first-page":"1079","DOI":"10.1109\/TKDE.2010.164","article-title":"Random k-labelsets for multilabel classification","volume":"23","author":"Tsoumakas","year":"2011","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"9","key":"10.1016\/j.patcog.2020.107583_bib0039","doi-asserted-by":"crossref","first-page":"3106","DOI":"10.1016\/j.patcog.2014.03.011","article-title":"Active learning with multi-criteria decision making systems","volume":"47","author":"Wang","year":"2014","journal-title":"Pattern Recognit."},{"issue":"10","key":"10.1016\/j.patcog.2020.107583_bib0040","doi-asserted-by":"crossref","first-page":"3751","DOI":"10.1016\/j.patcog.2012.03.022","article-title":"Inconsistency-based active learning for support vector machines","volume":"45","author":"Wang","year":"2012","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107583_bib0041","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.ins.2013.02.001","article-title":"A vector-valued support vector machine model for multiclass problem","volume":"235","author":"Wang","year":"2013","journal-title":"Inf. Sci."},{"issue":"6","key":"10.1016\/j.patcog.2020.107583_bib0042","doi-asserted-by":"crossref","first-page":"1699","DOI":"10.1109\/TFUZZ.2013.2291567","article-title":"Fuzzy rough set based active learning","volume":"22","author":"Wang","year":"2014","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"1","key":"10.1016\/j.patcog.2020.107583_bib0043","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1109\/TFUZZ.2015.2451698","article-title":"Ambiguity based multiclass active learning","volume":"24","author":"Wang","year":"2016","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"6","key":"10.1016\/j.patcog.2020.107583_bib0044","doi-asserted-by":"crossref","first-page":"1460","DOI":"10.1109\/TFUZZ.2017.2717803","article-title":"Incorporating diversity and informativeness in multiple-instance active learning","volume":"25","author":"Wang","year":"2018","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"2","key":"10.1016\/j.patcog.2020.107583_bib0045","doi-asserted-by":"crossref","first-page":"703","DOI":"10.1109\/TCYB.2017.2653223","article-title":"Discovering the relationship between generalization and uncertainty by incorporating complexity of classification","volume":"48","author":"Wang","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.patcog.2020.107583_bib0046","series-title":"Proc. ICME","article-title":"Ensemble of label specific features for multi-label classification","author":"Wei","year":"2018"},{"key":"10.1016\/j.patcog.2020.107583_bib0047","series-title":"Proc. 2014 IEEE ICIP","first-page":"5227","article-title":"Multi-label active learning for image classification","author":"Wu","year":"2014"},{"issue":"6","key":"10.1016\/j.patcog.2020.107583_bib0048","doi-asserted-by":"crossref","first-page":"1156","DOI":"10.1109\/TMM.2017.2652065","article-title":"Weak labeled active learning with conditional label dependence for multi-label image classification","volume":"19","author":"Wu","year":"2017","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.patcog.2020.107583_bib0049","series-title":"Proc. The 6th Symposium on Conformal and Probabilistic Prediction with Applications","first-page":"266","article-title":"CP-RAkEL: Improving random k-labelsets with conformal prediction for multi-label classification","author":"Yang","year":"2017"},{"key":"10.1016\/j.patcog.2020.107583_sbref0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2020.01.102","article-title":"Comparison of base classifiers for multi-label learning","author":"Yapp","year":"2020","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.patcog.2020.107583_bib0051","doi-asserted-by":"crossref","first-page":"1430","DOI":"10.1109\/TIP.2014.2302675","article-title":"Multilabel image classification via high-order label correlation driven active learning","volume":"23","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.patcog.2020.107583_bib0052","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1109\/TPAMI.2014.2339815","article-title":"LIFT: Multi-label learning with label-lpecific leatures","volume":"37","author":"Zhang","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"7","key":"10.1016\/j.patcog.2020.107583_bib0053","doi-asserted-by":"crossref","first-page":"2038","DOI":"10.1016\/j.patcog.2006.12.019","article-title":"ML-kNN: A lazy learning approach to multi-label learning","volume":"40","author":"Zhang","year":"2007","journal-title":"Pattern Recognit."},{"issue":"8","key":"10.1016\/j.patcog.2020.107583_bib0054","doi-asserted-by":"crossref","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","article-title":"A review on multi-label learning algorithms","volume":"26","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2020.107583_bib0055","series-title":"Proc. 24th IJCAI","first-page":"4041","article-title":"Towards class-imbalance aware multi-label learning","author":"Zhang","year":"2015"},{"issue":"2","key":"10.1016\/j.patcog.2020.107583_bib0056","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1007\/s11704-017-7031-7","article-title":"Binary relevance for multi-label learning: an overview","volume":"12","author":"Zhang","year":"2018","journal-title":"Front. Comput. Sci."},{"issue":"5","key":"10.1016\/j.patcog.2020.107583_bib0057","doi-asserted-by":"crossref","first-page":"1391","DOI":"10.1093\/bioinformatics\/btz757","article-title":"iATC-NRAKEL: An efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs","volume":"36","author":"Zhou","year":"2020","journal-title":"Bioinformatics"},{"key":"10.1016\/j.patcog.2020.107583_bib0058","series-title":"Encyclopedia of Machine Learning and Data Mining","first-page":"875","article-title":"Multi-label learning","author":"Zhou","year":"2017"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320303861?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320303861?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,5]],"date-time":"2023-10-05T09:21:19Z","timestamp":1696497679000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320320303861"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1]]},"references-count":58,"alternative-id":["S0031320320303861"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107583","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2021,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Active k-labelsets ensemble for multi-label classification","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107583","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107583"}}