{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T16:16:15Z","timestamp":1726503375934},"reference-count":56,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.patcog.2020.107526","type":"journal-article","created":{"date-parts":[[2020,7,1]],"date-time":"2020-07-01T15:23:50Z","timestamp":1593617030000},"page":"107526","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["A generalized weighted distance k-Nearest Neighbor for multi-label problems"],"prefix":"10.1016","volume":"114","author":[{"given":"Niloofar","family":"Rastin","sequence":"first","affiliation":[]},{"given":"Mansoor Zolghadri","family":"Jahromi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4888-5883","authenticated-orcid":false,"given":"Mohammad","family":"Taheri","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2020.107526_bib0001","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4018\/jdwm.2007070101","article-title":"Multi-label classification: an overview","volume":"3","author":"Tsoumakas","year":"2007","journal-title":"Int. J. Data Warehous. Min."},{"key":"10.1016\/j.patcog.2020.107526_bib0002","doi-asserted-by":"crossref","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","article-title":"A review on multi-label learning algorithms","volume":"26","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.patcog.2020.107526_bib0003","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1002\/widm.1139","article-title":"Multi-label learning: a review of the state of the art and ongoing research","volume":"4","author":"Gibaja","year":"2014","journal-title":"Wiley Interdiscip. Rev. Data Min. Knowl. Discov."},{"year":"2019","series-title":"Emerging Trends in Expert Applications and Security","author":"Pant","key":"10.1016\/j.patcog.2020.107526_bib0004"},{"key":"10.1016\/j.patcog.2020.107526_bib0005","first-page":"127","article-title":"Trending challenges in multi label classification","volume":"7","author":"Alazaidah","year":"2016","journal-title":"Int. J. Adv. Comput. Sci. Appl."},{"key":"10.1016\/j.patcog.2020.107526_bib0006","series-title":"Data Mining and Knowledge Discovery Handbook","first-page":"667","article-title":"Mining multi-label data","author":"Tsoumakas","year":"2009"},{"key":"10.1016\/j.patcog.2020.107526_bib0007","series-title":"Jt. Eur. Conf. Mach. Learn. Knowl. Discov. Databases","first-page":"254","article-title":"Classifier chains for multi-label classification","author":"Read","year":"2009"},{"key":"10.1016\/j.patcog.2020.107526_bib0008","series-title":"Pacific-Asia Conf. Knowl. Discov. Data Min.","first-page":"22","article-title":"Discriminative methods for multi-labeled classification","author":"Godbole","year":"2004"},{"key":"10.1016\/j.patcog.2020.107526_bib0009","series-title":"Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)","first-page":"406","article-title":"Random k-labelsets: an ensemble method for multilabel classification","author":"Tsoumakas","year":"2007"},{"key":"10.1016\/j.patcog.2020.107526_bib0010","doi-asserted-by":"crossref","first-page":"3738","DOI":"10.1016\/j.patcog.2012.03.014","article-title":"Inverse random under sampling for class imbalance problem and its application to multi-label classification","volume":"45","author":"Tahir","year":"2012","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107526_bib0011","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.neucom.2014.08.091","article-title":"Addressing imbalance in multilabel classification: measures and random resampling algorithms","volume":"163","author":"Charte","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2020.107526_bib0012","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/j.knosys.2015.07.019","article-title":"Approaching imbalanced multilabel learning through synthetic instance generation","volume":"89","author":"Charte","year":"2015","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.patcog.2020.107526_bib0013","series-title":"Twenty-Second Int. Jt. Conf. Artif. Intell.","article-title":"Dealing with concept drift and class imbalance in multi-label stream classification","author":"Spyromitros-Xioufis","year":"2011"},{"key":"10.1016\/j.patcog.2020.107526_bib0014","doi-asserted-by":"crossref","first-page":"876","DOI":"10.1016\/j.patcog.2011.08.007","article-title":"Multilabel classifiers with a probabilistic thresholding strategy","volume":"45","author":"Quevedo","year":"2012","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107526_bib0015","doi-asserted-by":"crossref","first-page":"2055","DOI":"10.1016\/j.patcog.2013.01.012","article-title":"Threshold optimisation for multi-label classifiers","volume":"46","author":"Pillai","year":"2013","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107526_bib0016","first-page":"1912","article-title":"Reverse multi-label learning","author":"Petterson","year":"2010","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.patcog.2020.107526_bib0017","first-page":"1130","article-title":"Optimizing the F-measure in multi-label classification: plug-in rule approach versus structured loss minimization","author":"Dembczynski","year":"2013","journal-title":"Int. Conf. Mach. Learn."},{"key":"10.1016\/j.patcog.2020.107526_bib0018","series-title":"Thirtieth AAAI Conf. Artif. Intell.","article-title":"Constrained submodular minimization for missing labels and class imbalance in multi-label learning","author":"Wu","year":"2016"},{"key":"10.1016\/j.patcog.2020.107526_bib0019","series-title":"Int. Conf. Neural Inf. Process","first-page":"79","article-title":"Multi-label weighted k-nearest neighbor classifier with adaptive weight estimation","author":"Xu","year":"2011"},{"key":"10.1016\/j.patcog.2020.107526_bib0020","doi-asserted-by":"crossref","first-page":"2038","DOI":"10.1016\/j.patcog.2006.12.019","article-title":"ML-KNN: a lazy learning approach to multi-label learning","volume":"40","author":"Zhang","year":"2007","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107526_bib0021","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","article-title":"Nearest neighbor pattern classification","volume":"13","author":"Cover","year":"1967","journal-title":"IEEE Trans. Inf. Theory."},{"year":"2001","series-title":"The Elements of Statistical Learning","author":"Friedman","key":"10.1016\/j.patcog.2020.107526_bib0022"},{"key":"10.1016\/j.patcog.2020.107526_bib0023","doi-asserted-by":"crossref","first-page":"1100","DOI":"10.1109\/TPAMI.2006.145","article-title":"Learning weighted metrics to minimize nearest-neighbor classification error","volume":"28","author":"Paredes","year":"2006","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.patcog.2020.107526_bib0024","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.patcog.2005.06.001","article-title":"Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization","volume":"39","author":"Paredes","year":"2006","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107526_bib0025","doi-asserted-by":"crossref","first-page":"2964","DOI":"10.1016\/j.ins.2009.04.012","article-title":"A method of learning weighted similarity function to improve the performance of nearest neighbor","volume":"179","author":"Jahromi","year":"2009","journal-title":"Inf. Sci."},{"key":"10.1016\/j.patcog.2020.107526_bib0026","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/j.patrec.2006.07.002","article-title":"Improving nearest neighbor rule with a simple adaptive distance measure","volume":"28","author":"Wang","year":"2007","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2020.107526_bib0027","unstructured":"J. Read, Advances in multi-label classification, (2011). https:\/\/jmread.github.io\/talks\/Charla-Malaga.pdf."},{"key":"10.1016\/j.patcog.2020.107526_bib0028","series-title":"Hell. Conf. Artif. Intell.","first-page":"401","article-title":"An empirical study of lazy multilabel classification algorithms","author":"Spyromitros","year":"2008"},{"key":"10.1016\/j.patcog.2020.107526_bib0029","first-page":"1","article-title":"A literature survey on algorithms for multi-label learning","volume":"18","author":"Sorower","year":"2010","journal-title":"Oregon State Univ. Corvallis."},{"key":"10.1016\/j.patcog.2020.107526_bib0030","series-title":"Signal Process. Conf. 2008 16th Eur.","first-page":"1","article-title":"Multi-label classification algorithm derived from k-nearest neighbor rule with label dependencies","author":"Younes","year":"2008"},{"key":"10.1016\/j.patcog.2020.107526_bib0031","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s10994-009-5127-5","article-title":"Combining instance-based learning and logistic regression for multilabel classification","volume":"76","author":"Cheng","year":"2009","journal-title":"Mach. Learn."},{"key":"10.1016\/j.patcog.2020.107526_bib0032","doi-asserted-by":"crossref","first-page":"339","DOI":"10.3233\/ICA-140468","article-title":"Evolutionary feature weighting to improve the performance of multi-label lazy algorithms","volume":"21","author":"Reyes","year":"2014","journal-title":"Integr. Comput. Aided. Eng."},{"key":"10.1016\/j.patcog.2020.107526_bib0033","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.ins.2017.12.034","article-title":"Multi-label classification using a fuzzy rough neighborhood consensus","volume":"433","author":"Vluymans","year":"2018","journal-title":"Inf. Sci."},{"year":"1988","series-title":"Distribution-Free Tests","author":"Neave","key":"10.1016\/j.patcog.2020.107526_bib0034"},{"key":"10.1016\/j.patcog.2020.107526_bib0035","first-page":"2411","article-title":"Mulan: a java library for multi-label learning","volume":"12","author":"Tsoumakas","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2020.107526_bib0036","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1007\/s10994-011-5256-5","article-title":"Classifier chains for multi-label classification","volume":"85","author":"Read","year":"2011","journal-title":"Mach. Learn."},{"key":"10.1016\/j.patcog.2020.107526_bib0037","series-title":"Pattern Recognit. (ICPR), 2016 23rd Int. Conf.","first-page":"1612","article-title":"Multi-label classification with meta-label-specific features","author":"Sun","year":"2016"},{"key":"10.1016\/j.patcog.2020.107526_bib0038","series-title":"Jt. IAPR Int. Work. Stat. Tech. Pattern Recognit. Struct. Syntactic Pattern Recognit.","first-page":"15","article-title":"Simultaneous nonlinear label-instance embedding for multi-label classification","author":"Kimura","year":"2016"},{"key":"10.1016\/j.patcog.2020.107526_bib0039","doi-asserted-by":"crossref","unstructured":"Q.-W. Zhang, Y. Zhong, M.-L. Zhang, Feature-Induced Labeling Information Enrichment for Multi-Label Learning, (2018).","DOI":"10.1609\/aaai.v32i1.11656"},{"key":"10.1016\/j.patcog.2020.107526_bib0040","series-title":"Artif. Intell. Signal Process. Conf. (AISP)","first-page":"246","article-title":"Multi-label classification systems by the use of supervised clustering","author":"Rastin","year":"2017"},{"key":"10.1016\/j.patcog.2020.107526_bib0041","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.neunet.2019.10.002","article-title":"Joint ranking SVM and binary relevance with robust Low-rank learning for multi-label classification","volume":"122","author":"Wu","year":"2020","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2020.107526_bib0042","unstructured":"S. Shu, F. Lv, L. Feng, J. Huang, S. He, J. He, L. Li, Incorporating multiple cluster centers for multi-label learning, (2020) 1\u201318. http:\/\/arxiv.org\/abs\/2004.08113."},{"key":"10.1016\/j.patcog.2020.107526_bib0043","unstructured":"A. Asuncion, D. Newman, UCI machine learning repository, (2007)."},{"key":"10.1016\/j.patcog.2020.107526_bib0044","first-page":"17","article-title":"Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework.","author":"Alcal\u00e1-Fdez","year":"2011","journal-title":"J. Mult. Log. Soft Comput."},{"key":"10.1016\/j.patcog.2020.107526_bib0045","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.neucom.2016.08.159","article-title":"On the evolutionary weighting of neighbours and features in the k-nearest neighbour rule","volume":"326","author":"Mateos-Garc\u00eda","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2020.107526_bib0046","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3319532","article-title":"A local mean representation-based K-nearest neighbor classifier","volume":"10","author":"Gou","year":"2019","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"10.1016\/j.patcog.2020.107526_bib0047","series-title":"Int. Conf. Hybrid Artif. Intell. Syst.","first-page":"296","article-title":"Improving the k-Nearest Neighbour rule by an evolutionary voting approach","author":"Garc\u00eda-Guti\u00e9rrez","year":"2014"},{"key":"10.1016\/j.patcog.2020.107526_bib0048","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1109\/TSMC.1976.5408784","article-title":"The distance-weighted K-Nearest-Neighbor rule","author":"Dudani","year":"1976","journal-title":"IEEE Trans. Syst. Man. Cybern."},{"key":"10.1016\/j.patcog.2020.107526_bib0049","first-page":"833","article-title":"A novel weighted voting for K-Nearest Neighbor rule","volume":"6","author":"Gou","year":"2011","journal-title":"JCP"},{"key":"10.1016\/j.patcog.2020.107526_bib0050","first-page":"1429","article-title":"A new distance-weighted k-nearest neighbor classifier","volume":"9","author":"Gou","year":"2012","journal-title":"J. Inf. Comput. Sci."},{"key":"10.1016\/j.patcog.2020.107526_bib0051","unstructured":"J. Dem\u0161ar, Statistical comparisons of classifiers over multiple data sets, 7 (2006) 1\u201330."},{"key":"10.1016\/j.patcog.2020.107526_bib0052","doi-asserted-by":"crossref","first-page":"1151","DOI":"10.1016\/j.patrec.2005.12.016","article-title":"A local mean-based nonparametric classifier","volume":"27","author":"Mitani","year":"2006","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2020.107526_bib0053","doi-asserted-by":"crossref","first-page":"980","DOI":"10.1016\/j.patrec.2013.01.028","article-title":"Coarse to fine K nearest neighbor classifier","volume":"34","author":"Xu","year":"2013","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2020.107526_bib0054","doi-asserted-by":"crossref","first-page":"3587","DOI":"10.1016\/j.eswa.2008.02.003","article-title":"Pseudo nearest neighbor rule for pattern classification","volume":"36","author":"Zeng","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.patcog.2020.107526_bib0055","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/j.knosys.2014.07.020","article-title":"Improved pseudo nearest neighbor classification","volume":"70","author":"Gou","year":"2014","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.patcog.2020.107526_bib0056","unstructured":"K. Kimura, L. Sun, M. Kudo, Mlc toolbox: a matlab\/octave library for multi-label classification, ArXiv Prepr. ArXiv1704.02592. (2017)."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320303290?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320303290?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,10,31]],"date-time":"2022-10-31T16:20:07Z","timestamp":1667233207000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320320303290"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":56,"alternative-id":["S0031320320303290"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107526","relation":{},"ISSN":["0031-3203"],"issn-type":[{"type":"print","value":"0031-3203"}],"subject":[],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A generalized weighted distance k-Nearest Neighbor for multi-label problems","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107526","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"107526"}}