{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T20:29:28Z","timestamp":1726518568967},"reference-count":56,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,6,1]],"date-time":"2020-06-01T00:00:00Z","timestamp":1590969600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"NSFC","doi-asserted-by":"publisher","award":["61673018","61272338","61703443"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004000","name":"Guangzhou Science and Technology","doi-asserted-by":"publisher","award":["201804010255"],"id":[{"id":"10.13039\/501100004000","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2020,6]]},"DOI":"10.1016\/j.patcog.2020.107210","type":"journal-article","created":{"date-parts":[[2020,1,17]],"date-time":"2020-01-17T06:56:13Z","timestamp":1579244173000},"page":"107210","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":22,"special_numbering":"C","title":["Invariant subspace learning for time series data based on dynamic time warping distance"],"prefix":"10.1016","volume":"102","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2946-6678","authenticated-orcid":false,"given":"Huiqi","family":"Deng","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9375-2214","authenticated-orcid":false,"given":"Weifu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Qi","family":"Shen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0165-8416","authenticated-orcid":false,"given":"Andy J.","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Pong C.","family":"Yuen","sequence":"additional","affiliation":[]},{"given":"Guocan","family":"Feng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2020.107210_bib0001","first-page":"66","article-title":"Dimensionality reduction: a comparative","volume":"10","author":"Van Der Maaten","year":"2009","journal-title":"J. Mach. Learn. Res."},{"issue":"8","key":"10.1016\/j.patcog.2020.107210_bib0002","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","article-title":"Representation learning: a review and new perspectives","volume":"35","author":"Bengio","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"11","key":"10.1016\/j.patcog.2020.107210_bib0003","doi-asserted-by":"crossref","first-page":"3542","DOI":"10.1016\/j.patcog.2015.04.018","article-title":"Feature representation for statistical-learning-based object detection: a review","volume":"48","author":"Li","year":"2015","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107210_bib0004","series-title":"International Conference on Artificial Neural Networks","first-page":"583","article-title":"Kernel principal component analysis","author":"Sch\u00f6lkopf","year":"1997"},{"key":"10.1016\/j.patcog.2020.107210_bib0005","series-title":"Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on","first-page":"2021","article-title":"Kernel dictionary learning","author":"Van Nguyen","year":"2012"},{"issue":"1","key":"10.1016\/j.patcog.2020.107210_bib0006","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.neucom.2011.08.018","article-title":"Kernel sparse representation based classification","volume":"77","author":"Yin","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.patcog.2020.107210_bib0007","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.ins.2014.08.066","article-title":"Kernel sparse representation for time series classification","volume":"292","author":"Chen","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.patcog.2020.107210_bib0008","series-title":"Advances in Neural Information Processing Systems","first-page":"730","article-title":"Coding time-varying signals using sparse, shift-invariant representations","author":"Lewicki","year":"1999"},{"key":"10.1016\/j.patcog.2020.107210_bib0009","series-title":"EUropean SIgnal Processing COnference (EUSIPCO\u201908)","first-page":"5","article-title":"Shift-invariant dictionary learning for sparse representations: extending K-SVD","author":"Mailh\u00e9","year":"2008"},{"key":"10.1016\/j.patcog.2020.107210_bib0010","series-title":"Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence","first-page":"149","article-title":"Shift-invariant sparse coding for audio classification","author":"Grosse","year":"2007"},{"key":"10.1016\/j.patcog.2020.107210_bib0011","series-title":"Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"2095","article-title":"Efficient shift-invariant dictionary learning","author":"Zheng","year":"2016"},{"key":"10.1016\/j.patcog.2020.107210_bib0012","series-title":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","first-page":"491","article-title":"Robust shapelets learning: transform-invariant prototypes","author":"Deng","year":"2018"},{"key":"10.1016\/j.patcog.2020.107210_bib0013","series-title":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","first-page":"3","article-title":"Learning DTW-shapelets for time-series classification","author":"Shah","year":"2016"},{"key":"10.1016\/j.patcog.2020.107210_bib0014","series-title":"Ijcai","first-page":"3995","article-title":"Deep convolutional neural networks on multichannel time series for human activity recognition.","volume":"vol. 15","author":"Yang","year":"2015"},{"key":"10.1016\/j.patcog.2020.107210_bib0015","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2625","article-title":"Long-term recurrent convolutional networks for visual recognition and description","author":"Donahue","year":"2015"},{"key":"10.1016\/j.patcog.2020.107210_bib0016","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.patcog.2018.02.011","article-title":"Structured dynamic time warping for continuous hand trajectory gesture recognition","volume":"80","author":"Tang","year":"2018","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.patcog.2020.107210_bib0017","first-page":"2104","article-title":"An analysis of the performance of artificial neural network technique for stock market forecasting","volume":"2","author":"Vaisla","year":"2010","journal-title":"Int. J. Comput. Sci.Eng."},{"issue":"9","key":"10.1016\/j.patcog.2020.107210_bib0018","doi-asserted-by":"crossref","first-page":"1832","DOI":"10.1016\/j.patcog.2008.12.008","article-title":"Invariant trajectory classification of dynamical systems with a case study on ECG","volume":"42","author":"Noponen","year":"2009","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107210_bib0019","series-title":"AAAI","first-page":"2956","article-title":"Clustering longitudinal clinical marker trajectories from electronic health data: applications to phenotyping and endotype discovery.","author":"Schulam","year":"2015"},{"key":"10.1016\/j.patcog.2020.107210_bib0020","series-title":"AAAI","first-page":"1273","article-title":"Learning adaptive forecasting models from irregularly sampled multivariate clinical data.","author":"Liu","year":"2016"},{"key":"10.1016\/j.patcog.2020.107210_bib0021","series-title":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"2171","article-title":"Resolving the bias in electronic medical records","author":"Zheng","year":"2017"},{"issue":"2","key":"10.1016\/j.patcog.2020.107210_bib0022","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1109\/TPAMI.2015.2414429","article-title":"Generalized canonical time warping","volume":"38","author":"Zhou","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach.Intell."},{"key":"10.1016\/j.patcog.2020.107210_bib0023","series-title":"Fundamentals of speech recognition","volume":"vol. 14","author":"Rabiner","year":"1993"},{"key":"10.1016\/j.patcog.2020.107210_bib0024","series-title":"Proceedings of the 2001 SIAM International Conference on Data Mining","first-page":"1","article-title":"Derivative dynamic time warping","author":"Keogh","year":"2001"},{"issue":"9","key":"10.1016\/j.patcog.2020.107210_bib0025","doi-asserted-by":"crossref","first-page":"2231","DOI":"10.1016\/j.patcog.2010.09.022","article-title":"Weighted dynamic time warping for time series classification","volume":"44","author":"Jeong","year":"2011","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.patcog.2020.107210_bib0026","first-page":"264","article-title":"Adaptive feature based dynamic time warping","volume":"10","author":"Xie","year":"2010","journal-title":"Int. J. Comput. Sci.Netw. Secur."},{"key":"10.1016\/j.patcog.2020.107210_bib0027","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.patcog.2017.09.020","article-title":"shapeDTW: shape dynamic time warping","volume":"74","author":"Zhao","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107210_bib0028","series-title":"Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on","first-page":"II","article-title":"A kernel for time series based on global alignments","volume":"vol. 2","author":"Cuturi","year":"2007"},{"key":"10.1016\/j.patcog.2020.107210_bib0029","series-title":"Proceedings of the 28th International Conference on Machine Learning (ICML-11)","first-page":"929","article-title":"Fast global alignment kernels","author":"Cuturi","year":"2011"},{"key":"10.1016\/j.patcog.2020.107210_bib0030","series-title":"International Conference on Machine Learning","first-page":"894","article-title":"Soft-DTW: a differentiable loss function for time-series","author":"Cuturi","year":"2017"},{"key":"10.1016\/j.patcog.2020.107210_bib0031","series-title":"Proceedings of the Fifth International Conference on Information and Knowledge Management","first-page":"11","article-title":"Efficient retrieval for browsing large image databases","author":"Wu","year":"1996"},{"key":"10.1016\/j.patcog.2020.107210_bib0032","series-title":"icde","first-page":"126","article-title":"Efficient time series matching by wavelets","author":"Chan","year":"1999"},{"issue":"2","key":"10.1016\/j.patcog.2020.107210_bib0033","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1145\/376284.375680","article-title":"Locally adaptive dimensionality reduction for indexing large time series databases","volume":"30","author":"Keogh","year":"2001","journal-title":"ACM SIGMOD Record"},{"key":"10.1016\/j.patcog.2020.107210_bib0034","series-title":"Proceedings of the on Thematic Workshops of ACM Multimedia 2017","first-page":"323","article-title":"Reconstructable and interpretable representations for time series with time-skip sparse dictionary learning","author":"Yoshimura","year":"2017"},{"issue":"2","key":"10.1016\/j.patcog.2020.107210_bib0035","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1109\/97.991133","article-title":"Face recognition using kernel principal component analysis","volume":"9","author":"Kim","year":"2002","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.patcog.2020.107210_bib0036","series-title":"Pattern Recognition (ICPR), 2010 20th International Conference on","first-page":"29","article-title":"Time series classification using support vector machine with gaussian elastic metric kernel","author":"Zhang","year":"2010"},{"key":"10.1016\/j.patcog.2020.107210_bib0037","series-title":"Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence","first-page":"2845","article-title":"Similarity preserving representation learning for time series analysis","author":"Lei","year":"2019"},{"key":"10.1016\/j.patcog.2020.107210_bib0038","series-title":"Signal-Image Technologies and Internet-Based System, 2007. SITIS\u201907. Third International IEEE Conference on","first-page":"839","article-title":"A study on the dynamic time warping in kernel machines","author":"Lei","year":"2007"},{"key":"10.1016\/j.patcog.2020.107210_bib0039","series-title":"Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on","first-page":"2772","article-title":"Support vector machines and dynamic time warping for time series","author":"Gudmundsson","year":"2008"},{"key":"10.1016\/j.patcog.2020.107210_bib0040","series-title":"Advances in Neural Information Processing Systems","first-page":"2286","article-title":"Canonical time warping for alignment of human behavior","author":"Zhou","year":"2009"},{"key":"10.1016\/j.patcog.2020.107210_bib0041","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.patcog.2017.08.015","article-title":"Time-series averaging using constrained dynamic time warping with tolerance","volume":"74","author":"Morel","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107210_bib0042","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1016\/j.patcog.2017.08.012","article-title":"Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces","volume":"74","author":"Schultz","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2020.107210_bib0043","series-title":"Advances in Neural Information Processing Systems","first-page":"817","article-title":"Multiple alignment of continuous time series","author":"Listgarten","year":"2005"},{"key":"10.1016\/j.patcog.2020.107210_bib0044","series-title":"Pattern classification","author":"Duda","year":"2012"},{"issue":"3","key":"10.1016\/j.patcog.2020.107210_bib0045","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1016\/j.patcog.2010.09.013","article-title":"A global averaging method for dynamic time warping, with applications to clustering","volume":"44","author":"Petitjean","year":"2011","journal-title":"Pattern Recognit."},{"issue":"5","key":"10.1016\/j.patcog.2020.107210_bib0046","doi-asserted-by":"crossref","first-page":"2305","DOI":"10.1016\/j.eswa.2014.11.007","article-title":"Multivariate time series classification with parametric derivative dynamic time warping","volume":"42","author":"G\u00f3recki","year":"2015","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.patcog.2020.107210_bib0047","unstructured":"Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, The UCR time series classification archive, 2015. www.cs.ucr.edu\/~eamonn\/time_series_data\/."},{"key":"10.1016\/j.patcog.2020.107210_bib0048","doi-asserted-by":"crossref","unstructured":"O. Chapelle, B. Sch\u00f6lkopf, A. Zien (Eds.), Semi-supervised learning, Cambridge, Mass.: MIT Press, 2006.","DOI":"10.7551\/mitpress\/9780262033589.001.0001"},{"issue":"Nov","key":"10.1016\/j.patcog.2020.107210_bib0049","first-page":"2399","article-title":"Manifold regularization: a geometric framework for learning from labeled and unlabeled examples","volume":"7","author":"Belkin","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.patcog.2020.107210_bib0050","series-title":"Thirtieth AAAI Conference on Artificial Intelligence","article-title":"Efficient learning of timeseries shapelets","author":"Hou","year":"2016"},{"key":"10.1016\/j.patcog.2020.107210_bib0051","series-title":"Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"392","article-title":"Learning time-series shapelets","author":"Grabocka","year":"2014"},{"key":"10.1016\/j.patcog.2020.107210_bib0052","series-title":"Proceedings of the 2013 SIAM International Conference on Data Mining","first-page":"668","article-title":"Fast shapelets: a scalable algorithm for discovering time series shapelets","author":"Rakthanmanon","year":"2013"},{"issue":"2","key":"10.1016\/j.patcog.2020.107210_bib0053","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1007\/s10844-012-0196-5","article-title":"Rotation-invariant similarity in time series using bag-of-patterns representation","volume":"39","author":"Lin","year":"2012","journal-title":"J. Intell. Inf. Syst."},{"key":"10.1016\/j.patcog.2020.107210_bib0054","series-title":"2013 IEEE 13th International Conference on Data Mining","first-page":"1175","article-title":"SAX-VSM: interpretable time series classification using sax and vector space model","author":"Senin","year":"2013"},{"issue":"6","key":"10.1016\/j.patcog.2020.107210_bib0055","doi-asserted-by":"crossref","first-page":"1505","DOI":"10.1007\/s10618-014-0377-7","article-title":"The boss is concerned with time series classification in the presence of noise","volume":"29","author":"Sch\u00e4fer","year":"2015","journal-title":"Data Min. Knowl. Discovery"},{"key":"10.1016\/j.patcog.2020.107210_bib0056","series-title":"sktime: a unified interface for machine learning with time series","author":"L\u00f6ning","year":"2019"}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320300169?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320320300169?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,3,12]],"date-time":"2020-03-12T21:19:51Z","timestamp":1584047991000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320320300169"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,6]]},"references-count":56,"alternative-id":["S0031320320300169"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107210","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2020,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Invariant subspace learning for time series data based on dynamic time warping distance","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2020.107210","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107210"}}