{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T15:53:03Z","timestamp":1726761183261},"reference-count":74,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,2,1]],"date-time":"2019-02-01T00:00:00Z","timestamp":1548979200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000054","name":"National Cancer Institute","doi-asserted-by":"publisher","award":["1U24CA180924-01A1"],"id":[{"id":"10.13039\/100000054","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000092","name":"U.S. National Library of Medicine","doi-asserted-by":"publisher","award":["R01LM011119-01","R01LM009239"],"id":[{"id":"10.13039\/100000092","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2019,2]]},"DOI":"10.1016\/j.patcog.2018.09.007","type":"journal-article","created":{"date-parts":[[2018,9,14]],"date-time":"2018-09-14T00:04:21Z","timestamp":1536883461000},"page":"188-200","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":118,"special_numbering":"C","title":["Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images"],"prefix":"10.1016","volume":"86","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7323-5300","authenticated-orcid":false,"given":"Le","family":"Hou","sequence":"first","affiliation":[]},{"given":"Vu","family":"Nguyen","sequence":"additional","affiliation":[]},{"given":"Ariel B.","family":"Kanevsky","sequence":"additional","affiliation":[]},{"given":"Dimitris","family":"Samaras","sequence":"additional","affiliation":[]},{"given":"Tahsin M.","family":"Kurc","sequence":"additional","affiliation":[]},{"given":"Tianhao","family":"Zhao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1577-8718","authenticated-orcid":false,"given":"Rajarsi R.","family":"Gupta","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Wenjin","family":"Chen","sequence":"additional","affiliation":[]},{"given":"David","family":"Foran","sequence":"additional","affiliation":[]},{"given":"Joel H.","family":"Saltz","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2018.09.007_bib0001","series-title":"IEEE Conference on Computer Vision and Pattern Recognition","first-page":"6428","article-title":"Mdnet: a semantically and visually interpretable medical image diagnosis network","author":"Zhang","year":"2017"},{"key":"10.1016\/j.patcog.2018.09.007_bib0002","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"320","article-title":"Tandemnet: distilling knowledge from medical images using diagnostic reports as optional semantic references","author":"Zhang","year":"2017"},{"key":"10.1016\/j.patcog.2018.09.007_bib0003","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.patrec.2014.02.008","article-title":"Cancer diagnosis by nuclear morphometry using spatial information","volume":"42","author":"Huang","year":"2014","journal-title":"Pattern Recognit. Lett."},{"issue":"8","key":"10.1016\/j.patcog.2018.09.007_bib0004","doi-asserted-by":"crossref","first-page":"2738","DOI":"10.1016\/j.patcog.2015.02.023","article-title":"Automated analysis and diagnosis of skin melanoma on whole slide histopathological images","volume":"48","author":"Lu","year":"2015","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0005","doi-asserted-by":"crossref","DOI":"10.4103\/2153-3539.83746","article-title":"Review of the current state of whole slide imaging in pathology","volume":"2","author":"Pantanowitz","year":"2011","journal-title":"J. Pathol. Inform."},{"issue":"7","key":"10.1016\/j.patcog.2018.09.007_bib0006","doi-asserted-by":"crossref","first-page":"844","DOI":"10.1038\/nm0798-844","article-title":"Tissue microarrays for high-throughput molecular profiling of tumor specimens","volume":"4","author":"Kononen","year":"1998","journal-title":"Nat. Med."},{"issue":"99","key":"10.1016\/j.patcog.2018.09.007_bib0007","first-page":"1","article-title":"Deep learning in microscopy image analysis: a survey","volume":"PP","author":"Xing","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.patcog.2018.09.007_bib0008","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1109\/RBME.2016.2515127","article-title":"Robust nucleus\/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review","volume":"9","author":"Xing","year":"2016","journal-title":"IEEE Rev. Biomed. Eng."},{"key":"10.1016\/j.patcog.2018.09.007_bib0009","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1016\/j.patcog.2017.06.021","article-title":"Automated segmentation of overlapped nuclei using concave point detection and segment grouping","volume":"71","author":"Zhang","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0010","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","article-title":"Spatial clockwork recurrent neural network for muscle perimysium segmentation","author":"Xie","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0011","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","article-title":"Transfer shape modeling towards high-throughput microscopy image segmentation","author":"Xing","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0012","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","article-title":"Deep learning in neural networks: an overview","volume":"61","author":"Schmidhuber","year":"2015","journal-title":"Neural Netw."},{"key":"10.1016\/j.patcog.2018.09.007_bib0013","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1016\/j.patcog.2017.10.013","article-title":"Recent advances in convolutional neural networks","volume":"77","author":"Gu","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0014","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.patcog.2018.09.007_bib0015","unstructured":"J. Saltz, R. Gupta, L. Hou, et\u00a0al., Spatial organization and molecular correlation of tumor infiltrating lymphocytes using deep learning on pathology images, Cell Reports, Accepted for Publication, 2018."},{"issue":"3","key":"10.1016\/j.patcog.2018.09.007_bib0016","doi-asserted-by":"crossref","first-page":"1020","DOI":"10.1016\/j.patcog.2012.09.015","article-title":"A survey of graph theoretical approaches to image segmentation","volume":"46","author":"Peng","year":"2013","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0017","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1016\/j.patcog.2018.02.012","article-title":"Automatic breast ultrasound image segmentation: a survey","volume":"79","author":"Xian","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0018","doi-asserted-by":"crossref","first-page":"949","DOI":"10.1016\/j.patcog.2016.07.023","article-title":"A survey on curvilinear object segmentation in multiple applications","volume":"60","author":"Bibiloni","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0019","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1016\/j.patcog.2016.10.020","article-title":"Machine learning in medical imaging","volume":"63","author":"Suzuki","year":"2017","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.patcog.2018.09.007_bib0020","doi-asserted-by":"crossref","first-page":"1093","DOI":"10.1016\/j.patcog.2008.08.027","article-title":"Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development","volume":"42","author":"Sertel","year":"2009","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.patcog.2018.09.007_bib0021","doi-asserted-by":"crossref","first-page":"1080","DOI":"10.1016\/j.patcog.2008.10.035","article-title":"Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation","volume":"42","author":"Kong","year":"2009","journal-title":"Pattern Recognit."},{"issue":"8","key":"10.1016\/j.patcog.2018.09.007_bib0022","doi-asserted-by":"crossref","first-page":"934","DOI":"10.1016\/j.patrec.2012.11.008","article-title":"Crypts detection in microscopic images using hierarchical structures","volume":"34","author":"Smochina","year":"2013","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2018.09.007_bib0023","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1016\/j.patcog.2017.08.004","article-title":"Breast cancer diagnosis in dce-mri using mixture ensemble of convolutional neural networks","volume":"72","author":"Rasti","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0024","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1016\/j.patcog.2016.05.029","article-title":"Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification","volume":"61","author":"Shen","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0025","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.patcog.2015.09.015","article-title":"An automated pattern recognition system for classifying indirect immunofluorescence images of hep-2 cells and specimens","volume":"51","author":"Manivannan","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0026","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1016\/j.patcog.2016.09.029","article-title":"Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: mtanns vs. cnns","volume":"63","author":"Tajbakhsh","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0027","doi-asserted-by":"crossref","first-page":"593","DOI":"10.1016\/j.patcog.2016.09.020","article-title":"Bundlemap: anatomically localized classification, regression, and hypothesis testing in diffusion mri","volume":"63","author":"Khatami","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0028","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.patcog.2017.05.010","article-title":"Feature extraction from histopathological images based on nucleus-guided convolutional neural network for breast lesion classification","volume":"71","author":"Zheng","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2018.09.007_bib0029","first-page":"1","article-title":"Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in h&e images","author":"Al-Milaji","year":"2017","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2018.09.007_bib0030","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"374","article-title":"Deep voting: a robust approach toward nucleus localization in microscopy images","author":"Xie","year":"2015"},{"key":"10.1016\/j.patcog.2018.09.007_bib0031","series-title":"Medical Image Computing and Computer-Assisted Intervention","first-page":"358","article-title":"Beyond classification: structured regression for robust cell detection using convolutional neural network","author":"Xie","year":"2015"},{"key":"10.1016\/j.patcog.2018.09.007_bib0032","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"640","article-title":"Subtype cell detection with an accelerated deep convolution neural network","author":"Wang","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0033","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.media.2016.11.004","article-title":"Dcan: deep contour-aware networks for object instance segmentation from histology images","volume":"36","author":"Chen","year":"2017","journal-title":"Med. Image Anal."},{"issue":"5","key":"10.1016\/j.patcog.2018.09.007_bib0034","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1109\/TMI.2016.2525803","article-title":"Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images","volume":"35","author":"Sirinukunwattana","year":"2016","journal-title":"Medical Imaging"},{"key":"10.1016\/j.patcog.2018.09.007_bib0035","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","article-title":"Detecting 10,000 cells in one second","author":"Xu","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0036","unstructured":"Pathologists\u2019 Hourly Wages, (http:\/\/www1.salary.com\/Physician-Pathology-hourly-wages.html)."},{"key":"10.1016\/j.patcog.2018.09.007_bib0037","series-title":"Advances in Neural Information Processing Systems","first-page":"1137","article-title":"Efficient learning of sparse representations with an energy-based model","author":"Ranzato","year":"2006"},{"key":"10.1016\/j.patcog.2018.09.007_bib0038","series-title":"International Conference on Artificial Neural Networks (ICANN)","first-page":"52","article-title":"Stacked convolutional auto-encoders for hierarchical feature extraction","author":"Masci","year":"2011"},{"key":"10.1016\/j.patcog.2018.09.007_bib0039","series-title":"European Conference on Computer Vision Workshops","first-page":"532","article-title":"Transfer learning for cell nuclei classification in histopathology images","author":"Bayramoglu","year":"2016"},{"issue":"1","key":"10.1016\/j.patcog.2018.09.007_bib0040","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1109\/TMI.2015.2458702","article-title":"Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images","volume":"35","author":"Xu","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.patcog.2018.09.007_bib0041","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"383","article-title":"Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders","author":"Su","year":"2015"},{"key":"10.1016\/j.patcog.2018.09.007_bib0042","series-title":"New York Scientific Data Summit","article-title":"Automatic histopathology image analysis with CNNs","author":"Hou","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0043","series-title":"Winter Conference on Applications of Computer Vision (WACV)","article-title":"Center-focusing multi-task CNN with injected features for classification of glioma nuclear images","author":"Murthy","year":"2017"},{"key":"10.1016\/j.patcog.2018.09.007_bib0044","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.patrec.2016.01.007","article-title":"Cell image classification by a scale and rotation invariant dense local descriptor","volume":"82","author":"Gragnaniello","year":"2016","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2018.09.007_bib0045","series-title":"International Conference on Machine Learning","article-title":"Towards end-to-end speech recognition with recurrent neural networks.","author":"Graves","year":"2014"},{"key":"10.1016\/j.patcog.2018.09.007_bib0046","series-title":"Advances in Neural Information Processing Systems","first-page":"91","article-title":"Faster r-cnn: towards real-time object detection with region proposal networks","author":"Ren","year":"2015"},{"key":"10.1016\/j.patcog.2018.09.007_bib0047","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)","first-page":"779","article-title":"You only look once: unified, real-time object detection","author":"Redmon","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0048","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"6129","article-title":"Ubernet: training auniversal\u2019convolutional neural network for low-,\u00a0mid-, and high-level vision using diverse datasets and limited memory","author":"Kokkinos","year":"2017"},{"key":"10.1016\/j.patcog.2018.09.007_bib0049","series-title":"International Conference on Learning Representations","article-title":"Unsupervised representation learning with deep convolutional generative adversarial networks","author":"Radford","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0050","series-title":"IEEE International Conference on Computer Vision (ICCV)","first-page":"1422","article-title":"Unsupervised visual representation learning by context prediction","author":"Doersch","year":"2015"},{"key":"10.1016\/j.patcog.2018.09.007_bib0051","series-title":"Eleventh Annual Conference of the International Speech Communication Association","article-title":"Binary coding of speech spectrograms using a deep auto-encoder.","author":"Deng","year":"2010"},{"key":"10.1016\/j.patcog.2018.09.007_bib0052","series-title":"Technical Report","article-title":"Sparse Autoencoder","author":"Ng","year":"2011"},{"key":"10.1016\/j.patcog.2018.09.007_bib0053","series-title":"Advances in Neural Information Processing Systems (NIPS)","first-page":"919","article-title":"Semi-supervised convolutional neural networks for text categorization via region embedding","author":"Johnson","year":"2015"},{"key":"10.1016\/j.patcog.2018.09.007_bib0054","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)","first-page":"2583","article-title":"Blockout: dynamic model selection for hierarchical deep networks","author":"Murdock","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0055","doi-asserted-by":"crossref","unstructured":"B. Graham, Spatially-sparse convolutional neural networks, arXiv:1409.6070 (2014).","DOI":"10.5244\/C.29.150"},{"key":"10.1016\/j.patcog.2018.09.007_bib0056","series-title":"International Conference on Learning Representations (ICLR)","article-title":"k-sparse autoencoders","author":"Makhzani","year":"2014"},{"key":"10.1016\/j.patcog.2018.09.007_bib0057","series-title":"International conference on machine learning (ICML)","first-page":"448","article-title":"Batch normalization: accelerating deep network training by reducing internal covariate shift","author":"Ioffe","year":"2015"},{"key":"10.1016\/j.patcog.2018.09.007_bib0058","unstructured":"MICCAI 2015 workshop and challenges in imaging and digital pathology: the computational brain tumor cluster of event, 2015, (https:\/\/wiki.cancerimagingarchive.net\/pages\/viewpage.action?pageId=20644646)."},{"key":"10.1016\/j.patcog.2018.09.007_bib0059","series-title":"International conference on machine learning (ICML)","first-page":"3","article-title":"Rectifier nonlinearities improve neural network acoustic models","volume":"30","author":"Maas","year":"2013"},{"key":"10.1016\/j.patcog.2018.09.007_bib0060","unstructured":"The cancer genome atlas, (https:\/\/cancergenome.nih.gov\/)."},{"issue":"5795","key":"10.1016\/j.patcog.2018.09.007_bib0061","doi-asserted-by":"crossref","first-page":"1960","DOI":"10.1126\/science.1129139","article-title":"Type, density, and location of immune cells within human colorectal tumors predict clinical outcome","volume":"313","author":"Galon","year":"2006","journal-title":"Science"},{"issue":"2","key":"10.1016\/j.patcog.2018.09.007_bib0062","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1093\/annonc\/mdu450","article-title":"The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014","volume":"26","author":"Salgado","year":"2014","journal-title":"Ann. Oncol."},{"key":"10.1016\/j.patcog.2018.09.007_bib0063","doi-asserted-by":"crossref","DOI":"10.4103\/2153-3539.189703","article-title":"Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples","volume":"7","author":"Turkki","year":"2016","journal-title":"J. Pathol. Inform."},{"key":"10.1016\/j.patcog.2018.09.007_bib0064","series-title":"European Conference on Computer Vision (ECCV)","first-page":"816","article-title":"Large-scale training of shadow detectors with noisily-annotated shadow examples","author":"Vicente","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0065","unstructured":"Theano Development Team, Theano: a python framework for fast computation of mathematical expressions, arXiv:1605.02688 (2016)."},{"key":"10.1016\/j.patcog.2018.09.007_bib0066","unstructured":"F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet: alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size, arXiv:1602.07360 (2016)."},{"key":"10.1016\/j.patcog.2018.09.007_bib0067","series-title":"International Conference on Learning Representations (ICLR)","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2015"},{"issue":"3","key":"10.1016\/j.patcog.2018.09.007_bib0068","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"Imagenet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.patcog.2018.09.007_bib0069","series-title":"IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"947","article-title":"Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation","author":"Xu","year":"2015"},{"key":"10.1016\/j.patcog.2018.09.007_bib0070","series-title":"Medical Imaging 2017: Digital Pathology","first-page":"101400K","article-title":"Evaluation of nucleus segmentation in digital pathology images through large scale image synthesis","volume":"10140","author":"Zhou","year":"2017"},{"issue":"157","key":"10.1016\/j.patcog.2018.09.007_bib0071","doi-asserted-by":"crossref","DOI":"10.1126\/scitranslmed.3004330","article-title":"Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling","volume":"4","author":"Yuan","year":"2012","journal-title":"Sci. Transl. Med."},{"issue":"8","key":"10.1016\/j.patcog.2018.09.007_bib0072","doi-asserted-by":"crossref","first-page":"1266","DOI":"10.1109\/83.506761","article-title":"An fft-based technique for translation, rotation, and scale-invariant image registration","volume":"5","author":"Reddy","year":"1996","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.patcog.2018.09.007_bib0073","series-title":"Medical Imaging 2016: Digital Pathology","first-page":"979117","article-title":"Hierarchical nucleus segmentation in digital pathology images","volume":"9791","author":"Gao","year":"2016"},{"key":"10.1016\/j.patcog.2018.09.007_bib0074","unstructured":"X. Xia, B. Kulis, W-net: a deep model for fully unsupervised image segmentation, arXiv:1711.08506 (2017)."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320318303261?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320318303261?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,24]],"date-time":"2019-10-24T05:38:26Z","timestamp":1571895506000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320318303261"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,2]]},"references-count":74,"alternative-id":["S0031320318303261"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2018.09.007","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2019,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2018.09.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}