{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,5]],"date-time":"2024-07-05T05:18:44Z","timestamp":1720156724531},"reference-count":35,"publisher":"Elsevier BV","issue":"11","license":[{"start":{"date-parts":[[2015,11,1]],"date-time":"2015-11-01T00:00:00Z","timestamp":1446336000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Pattern Recognition"],"published-print":{"date-parts":[[2015,11]]},"DOI":"10.1016\/j.patcog.2015.05.001","type":"journal-article","created":{"date-parts":[[2015,5,13]],"date-time":"2015-05-13T23:45:18Z","timestamp":1431560718000},"page":"3749-3756","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"title":["Bridging from syntactic to statistical methods: Classification with automatically segmented features from sequences"],"prefix":"10.1016","volume":"48","author":[{"given":"J.","family":"Sidorova","sequence":"first","affiliation":[]},{"given":"J.","family":"Garcia","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.patcog.2015.05.001_bib1","doi-asserted-by":"crossref","unstructured":"M. Venguerov, P. Cunningham, Generalized syntactic pattern recognition as a unifying approach in image analysis, in: The Second International Workshop on Statistical Techniques in Pattern Recognition, 1998, pp. 913\u2013920.","DOI":"10.1007\/BFb0033319"},{"key":"10.1016\/j.patcog.2015.05.001_bib2","series-title":"Handbook of Natural Language Processing","first-page":"727","article-title":"Grammar inference, automata induction, and language acquisition","author":"Parekh","year":"2000"},{"key":"10.1016\/j.patcog.2015.05.001_bib3","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.1016\/j.patcog.2005.01.003","article-title":"A bibliographical study of grammatical inference","volume":"38","author":"de la Higuera","year":"2005","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2015.05.001_bib4","doi-asserted-by":"crossref","first-page":"1053","DOI":"10.1016\/0031-3203(94)00182-L","article-title":"Theoretical aspects of syntactic pattern recognition","volume":"28","author":"Tanaka","year":"1995","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2015.05.001_bib5","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1007\/s10044-013-0322-1","article-title":"Fundamental methodological issues of syntactic pattern recognition","volume":"17","author":"Flasinski","year":"2014","journal-title":"Pattern Anal. Appl."},{"key":"10.1016\/j.patcog.2015.05.001_bib6","doi-asserted-by":"crossref","first-page":"1642","DOI":"10.1016\/j.patcog.2009.10.013","article-title":"Generalized median graph computation by means of graph embedding in vector spaces","volume":"43","author":"Ferrer","year":"2010","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2015.05.001_bib7","doi-asserted-by":"crossref","first-page":"2213","DOI":"10.1016\/S0031-3203(03)00084-0","article-title":"Spectral embedding on graphs","volume":"36","author":"Luo","year":"2003","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2015.05.001_bib8","doi-asserted-by":"crossref","first-page":"1057","DOI":"10.1016\/j.patcog.2010.11.015","article-title":"Recent advances in graph-based pattern recognition with applications in document analysis","volume":"44","author":"Bunke","year":"2011","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2015.05.001_bib9","doi-asserted-by":"crossref","first-page":"356","DOI":"10.1016\/j.patcog.2014.07.029","article-title":"Treelet kernel incorporating cyclic, stereo and inter pattern information in chemoinformatics","volume":"48","author":"Gauzere","year":"2015","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2015.05.001_bib10","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/j.patcog.2014.01.002","article-title":"A long trip in the charming world of graphs for Pattern Recognition","volume":"48","author":"Vento","year":"2015","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2015.05.001_bib11","unstructured":"J. Garcia, R. Aler, J. Sidorova, Data Analysis, Open Courseware Universidad Carlos III de Madrid, 2014. Retrieved on 27\/01\/2015. \u3008https:\/\/www.youtube.com\/watch?v=q4IHnJws3qE\u3009"},{"key":"10.1016\/j.patcog.2015.05.001_bib12","doi-asserted-by":"crossref","first-page":"817","DOI":"10.1038\/nbt.1662","article-title":"Discovery and characterization of chromatin states for systematic annotation of the human genome","volume":"28","author":"Ernst","year":"2010","journal-title":"Nat. Biotechnol."},{"key":"10.1016\/j.patcog.2015.05.001_bib13","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1007\/s10482-013-9993-2","article-title":"Serine\/threonine kinases and E2-ubiquitin","volume":"104","author":"Arcas","year":"2013","journal-title":"Antonie Van Leeuwenhoek"},{"key":"10.1016\/j.patcog.2015.05.001_bib14","doi-asserted-by":"crossref","unstructured":"R. Durbin, S.R. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis. Probabilistic Models of Proteins and Nucleic Acids, Cambridge, UK, 1999.","DOI":"10.1017\/CBO9780511790492"},{"key":"10.1016\/j.patcog.2015.05.001_bib15","series-title":"Pattern Recognition and Image Analysis","first-page":"943","article-title":"Learning decision trees and tree automata for a syntactic pattern recognition task","author":"Sempere","year":"2003"},{"key":"10.1016\/j.patcog.2015.05.001_bib16","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/S0933-3657(02)00056-8","article-title":"Syntactic reasoning and pattern recognition for analysis of coronary artery images","volume":"26","author":"Ogiela","year":"2002","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.patcog.2015.05.001_bib17","doi-asserted-by":"crossref","unstructured":"J. Sidorova, A. Fernandez, J. Cester, R. Rallo, F. Giralt, Predicting biodegradable quality of chemicals with the TGI+. 3 classifier, in: The 11th IASTED International Conference on Artificial Intelligence and Applications, 2011, pp. 108\u2013115.","DOI":"10.2316\/P.2011.717-044"},{"key":"10.1016\/j.patcog.2015.05.001_bib18","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.patrec.2014.02.012","article-title":"NLP-inspired structural pattern recognition in chemical application","volume":"45","author":"Sidorova","year":"2014","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.patcog.2015.05.001_bib19","series-title":"Data Mining","author":"Witten","year":"2011"},{"key":"10.1016\/j.patcog.2015.05.001_bib20","unstructured":"T. Caetano, The interplay of statistical and structural pattern recognition from a machine learning perspective, in: International Conference on Pattern Recognition Applications and Methods (ICPRAM), 2012. Retrieved on 27\/01\/2015. \u3008http:\/\/vimeo.com\/38450616\u3009,"},{"key":"10.1016\/j.patcog.2015.05.001_bib21","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1186\/1758-2946-3-11","article-title":"Interpreting linear support vector machine with heat map molecule coloring","volume":"3","author":"Rosenbaum","year":"2011","journal-title":"J. Chemoinf."},{"key":"10.1016\/j.patcog.2015.05.001_bib22","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1021\/ci00057a005","article-title":"SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules","volume":"28","author":"Weininger","year":"1988","journal-title":"J. Chem. Inf. Comput. Sci."},{"key":"10.1016\/j.patcog.2015.05.001_bib23","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1109\/72.363444","article-title":"Efficient classification for multiclass problems using modular neural networks","volume":"6","author":"Anand","year":"1995","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.patcog.2015.05.001_bib24","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1214\/aos\/1028144844","article-title":"Classification by pairwise coupling","volume":"26","author":"Hastie","year":"1998","journal-title":"Ann. Statist."},{"key":"10.1016\/j.patcog.2015.05.001_bib25","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1613\/jair.105","article-title":"Solving multiclass learning problems via error-correcting output codes","volume":"2","author":"Dietterich","year":"1995","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.patcog.2015.05.001_bib26","doi-asserted-by":"crossref","first-page":"2830","DOI":"10.1016\/j.patcog.2013.03.014","article-title":"A genetic-based subspace analysis method for improving error-correcting output coding","volume":"46","author":"Bagheri","year":"2013","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.patcog.2015.05.001_bib27","series-title":"Handbook of Data-Mining and Knowledge Discovery","first-page":"267","article-title":"Data mining tasks and methods","author":"Kovahi","year":"2002"},{"key":"10.1016\/j.patcog.2015.05.001_bib28","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1021\/cen-v075n034.p024","article-title":"Hormone disrupter research expands","volume":"75","author":"Hileman","year":"1997","journal-title":"Chem. Eng. News"},{"key":"10.1016\/j.patcog.2015.05.001_bib29","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1021\/tx000208y","article-title":"Structure\u2013activity relationships for a large diverse set of natural, synthetic, and environmental estrogens","volume":"14","author":"Fang","year":"2001","journal-title":"Chem. Res. Toxicol."},{"key":"10.1016\/j.patcog.2015.05.001_bib30","first-page":"33","article-title":"In silico toxicology\u2014non-testing methods","volume":"2","author":"Hannu","year":"2011","journal-title":"Front. Pharmacol."},{"key":"10.1016\/j.patcog.2015.05.001_bib31","doi-asserted-by":"crossref","unstructured":"N. Fonseca, V. Santos Costa, R. Camacho, k-RNN: k-relational nearest neighbor algorithm, in: Symposium on Applied Computing (SAC), ACM Brazil, 2008, pp. 944\u2013948.","DOI":"10.1145\/1363686.1363901"},{"key":"10.1016\/j.patcog.2015.05.001_bib32","unstructured":"N. Landwehr, A. Passerini, L. De Raedt, P. Frasconi, k-FOIL: learning relational kernels, in: S. Muggleton, R. Otero (Eds.), The 16th International Conference on Inductive Logic Programming (IPL), Short Papers, 2006, pp. 125\u2013127."},{"key":"10.1016\/j.patcog.2015.05.001_bib33","doi-asserted-by":"crossref","first-page":"2432","DOI":"10.1021\/ci060159g","article-title":"SMIREP","volume":"46","author":"Karwath","year":"2006","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.patcog.2015.05.001_bib34","doi-asserted-by":"crossref","first-page":"6166","DOI":"10.1016\/j.csda.2006.12.043","article-title":"Classification from ensembles from random partitions of high-dimensional data","volume":"51","author":"Ahn","year":"2007","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.patcog.2015.05.001_bib35","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1186\/1758-2946-3-33","article-title":"Open Babel","volume":"3","author":"OLBoyle","year":"2011","journal-title":"J. Cheminf."}],"container-title":["Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320315001661?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0031320315001661?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,24]],"date-time":"2019-08-24T22:24:41Z","timestamp":1566685481000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0031320315001661"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,11]]},"references-count":35,"journal-issue":{"issue":"11","published-print":{"date-parts":[[2015,11]]}},"alternative-id":["S0031320315001661"],"URL":"https:\/\/doi.org\/10.1016\/j.patcog.2015.05.001","relation":{},"ISSN":["0031-3203"],"issn-type":[{"value":"0031-3203","type":"print"}],"subject":[],"published":{"date-parts":[[2015,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Bridging from syntactic to statistical methods: Classification with automatically segmented features from sequences","name":"articletitle","label":"Article Title"},{"value":"Pattern Recognition","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.patcog.2015.05.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}