{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,21]],"date-time":"2025-04-21T19:46:49Z","timestamp":1745264809385,"version":"3.37.3"},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,4,11]],"date-time":"2024-04-11T00:00:00Z","timestamp":1712793600000},"content-version":"vor","delay-in-days":10,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004608","name":"Jiangsu Province Natural Science Foundation","doi-asserted-by":"publisher","award":["BK20190079","BK20210069"],"id":[{"id":"10.13039\/501100004608","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.neuroimage.2024.120608","type":"journal-article","created":{"date-parts":[[2024,4,16]],"date-time":"2024-04-16T09:10:09Z","timestamp":1713258609000},"page":"120608","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Light3DHS: A lightweight 3D hippocampus segmentation method using multiscale convolution attention and vision transformer"],"prefix":"10.1016","volume":"292","author":[{"given":"Zhiyong","family":"Xiao","sequence":"first","affiliation":[]},{"given":"Yuhong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zhaohong","family":"Deng","sequence":"additional","affiliation":[]},{"given":"Fei","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.neuroimage.2024.120608_b1","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.jalz.2014.12.002","article-title":"Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol","volume":"11","author":"Boccardi","year":"2015","journal-title":"Alzheimer\u2019s Dement."},{"year":"2021","author":"Cao","series-title":"Swin-unet: Unet-like pure transformer for medical image segmentation","key":"10.1016\/j.neuroimage.2024.120608_b2"},{"year":"2021","author":"Chang","series-title":"Transclaw u-net: Claw u-net with transformers for medical image segmentation","key":"10.1016\/j.neuroimage.2024.120608_b3"},{"year":"2021","author":"Chen","series-title":"Transunet: Transformers make strong encoders for medical image segmentation","key":"10.1016\/j.neuroimage.2024.120608_b4"},{"issue":"4","key":"10.1016\/j.neuroimage.2024.120608_b5","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neuroimage.2024.120608_b6","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"424","article-title":"3D U-Net: learning dense volumetric segmentation from sparse annotation","author":"\u00c7i\u00e7ek","year":"2016"},{"key":"10.1016\/j.neuroimage.2024.120608_b7","first-page":"3965","article-title":"Coatnet: Marrying convolution and attention for all data sizes","volume":"34","author":"Dai","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.neuroimage.2024.120608_b8","doi-asserted-by":"crossref","first-page":"68","DOI":"10.26599\/TST.2020.9010056","article-title":"Combining residual attention mechanisms and generative adversarial networks for hippocampus segmentation","volume":"27","author":"Deng","year":"2021","journal-title":"Tsinghua Sci. Technol."},{"issue":"1","key":"10.1016\/j.neuroimage.2024.120608_b9","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1093\/schbul\/sbp115","article-title":"The 2009 schizophrenia PORT psychosocial treatment recommendations and summary statements","volume":"36","author":"Dixon","year":"2010","journal-title":"Schizophr. Bull."},{"year":"2020","author":"Dosovitskiy","series-title":"An image is worth 16x16 words: Transformers for image recognition at scale","key":"10.1016\/j.neuroimage.2024.120608_b10"},{"issue":"2","key":"10.1016\/j.neuroimage.2024.120608_b11","doi-asserted-by":"crossref","first-page":"417","DOI":"10.3233\/JAD-180173","article-title":"A study of Amyloid-\u03b2 and Phosphotau in plaques and neurons in the Hippocampus of Alzheimer\u2019s disease patients","volume":"64","author":"Furcila","year":"2018","journal-title":"J. Alzheimer\u2019s Dis."},{"key":"10.1016\/j.neuroimage.2024.120608_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.jfoodeng.2023.111833","article-title":"High accuracy food image classification via vision transformer with data augmentation and feature augmentation","volume":"365","author":"Gao","year":"2024","journal-title":"J. Food Eng."},{"key":"10.1016\/j.neuroimage.2024.120608_b13","series-title":"2011 IEEE International Symposium on Biomedical Imaging: From Nano To Macro","first-page":"1082","article-title":"Regional analysis of FDG-PET for use in the classification of alzheimer\u2019s disease","author":"Gray","year":"2011"},{"year":"2022","author":"Guo","series-title":"SegNeXt: Rethinking convolutional attention design for semantic segmentation","key":"10.1016\/j.neuroimage.2024.120608_b14"},{"key":"10.1016\/j.neuroimage.2024.120608_b15","series-title":"International MICCAI Brainlesion Workshop","first-page":"272","article-title":"Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images","author":"Hatamizadeh","year":"2022"},{"doi-asserted-by":"crossref","unstructured":"Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., Roth, H.R., Xu, D., 2022b. Unetr: Transformers for 3d medical image segmentation. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision. pp. 574\u2013584.","key":"10.1016\/j.neuroimage.2024.120608_b16","DOI":"10.1109\/WACV51458.2022.00181"},{"key":"10.1016\/j.neuroimage.2024.120608_b17","first-page":"1","article-title":"Hippocampus segmentation using U-net convolutional network from brain magnetic resonance imaging (MRI)","author":"Hazarika","year":"2022","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.neuroimage.2024.120608_b18","series-title":"2016 IEEE 13th International Symposium on Biomedical Imaging","first-page":"19","article-title":"Quad-mesh based radial distance biomarkers for Alzheimer\u2019s disease","author":"Hobbs","year":"2016"},{"doi-asserted-by":"crossref","unstructured":"Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al., 2019. Searching for mobilenetv3. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision. pp. 1314\u20131324.","key":"10.1016\/j.neuroimage.2024.120608_b19","DOI":"10.1109\/ICCV.2019.00140"},{"issue":"2","key":"10.1016\/j.neuroimage.2024.120608_b20","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1038\/s41592-020-01008-z","article-title":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation","volume":"18","author":"Isensee","year":"2021","journal-title":"Nature Methods"},{"key":"10.1016\/j.neuroimage.2024.120608_b21","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"78","article-title":"Convolution-free medical image segmentation using transformers","author":"Karimi","year":"2021"},{"issue":"1","key":"10.1016\/j.neuroimage.2024.120608_b22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2015.59","article-title":"Multi-contrast submillimetric 3 Tesla hippocampal subfield segmentation protocol and dataset","volume":"2","author":"Kulaga-Yoskovitz","year":"2015","journal-title":"Sci. Data"},{"key":"10.1016\/j.neuroimage.2024.120608_b23","series-title":"2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering","first-page":"595","article-title":"Segmentation of Hippocampus based on 3Dunet-CBAM model","author":"Li","year":"2021"},{"key":"10.1016\/j.neuroimage.2024.120608_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.119166","article-title":"Multiscale lightweight 3D segmentation algorithm with attention mechanism: Brain tumor image segmentation","volume":"214","author":"Liu","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neuroimage.2024.120608_b25","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"235","article-title":"Phtrans: Parallelly aggregating global and local representations for medical image segmentation","author":"Liu","year":"2022"},{"doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431\u20133440.","key":"10.1016\/j.neuroimage.2024.120608_b26","DOI":"10.1109\/CVPR.2015.7298965"},{"issue":"3","key":"10.1016\/j.neuroimage.2024.120608_b27","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1109\/JBHI.2020.2998146","article-title":"HDC-Net: Hierarchical decoupled convolution network for brain tumor segmentation","volume":"25","author":"Luo","year":"2020","journal-title":"IEEE J. Biomed. Health Inf."},{"year":"2021","author":"Mehta","series-title":"Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer","key":"10.1016\/j.neuroimage.2024.120608_b28"},{"year":"2020","author":"Mohamed","series-title":"A data and compute efficient design for limited-resources deep learning","key":"10.1016\/j.neuroimage.2024.120608_b29"},{"year":"2018","author":"Oktay","series-title":"Attention u-net: Learning where to look for the pancreas","key":"10.1016\/j.neuroimage.2024.120608_b30"},{"key":"10.1016\/j.neuroimage.2024.120608_b31","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"162","article-title":"A robust volumetric transformer for accurate 3D tumor segmentation","author":"Peiris","year":"2022"},{"doi-asserted-by":"crossref","unstructured":"Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J., 2017. Large kernel matters\u2013improve semantic segmentation by global convolutional network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4353\u20134361.","key":"10.1016\/j.neuroimage.2024.120608_b32","DOI":"10.1109\/CVPR.2017.189"},{"key":"10.1016\/j.neuroimage.2024.120608_b33","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4510\u20134520.","key":"10.1016\/j.neuroimage.2024.120608_b34","DOI":"10.1109\/CVPR.2018.00474"},{"issue":"2","key":"10.1016\/j.neuroimage.2024.120608_b35","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1109\/JBHI.2020.2994114","article-title":"Discriminative feature network based on a hierarchical attention mechanism for semantic hippocampus segmentation","volume":"25","author":"Shi","year":"2020","journal-title":"IEEE J. Biomed. Health Inf."},{"year":"2019","author":"Simpson","series-title":"A large annotated medical image dataset for the development and evaluation of segmentation algorithms","key":"10.1016\/j.neuroimage.2024.120608_b36"},{"key":"10.1016\/j.neuroimage.2024.120608_b37","series-title":"International Conference on Machine Learning","first-page":"6105","article-title":"Efficientnet: Rethinking model scaling for convolutional neural networks","author":"Tan","year":"2019"},{"key":"10.1016\/j.neuroimage.2024.120608_b38","series-title":"International Conference on Machine Learning","first-page":"10096","article-title":"Efficientnetv2: Smaller models and faster training","author":"Tan","year":"2021"},{"doi-asserted-by":"crossref","unstructured":"Tan, M., Pang, R., Le, Q.V., 2020. Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 10781\u201310790.","key":"10.1016\/j.neuroimage.2024.120608_b39","DOI":"10.1109\/CVPR42600.2020.01079"},{"issue":"4","key":"10.1016\/j.neuroimage.2024.120608_b40","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1016\/j.neurobiolaging.2011.05.018","article-title":"Structural MRI changes detectable up to ten years before clinical Alzheimer\u2019s disease","volume":"33","author":"Tondelli","year":"2012","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.neuroimage.2024.120608_b41","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neuroimage.2024.120608_b42","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"109","article-title":"Transbts: Multimodal brain tumor segmentation using transformer","author":"Wang","year":"2021"},{"key":"10.1016\/j.neuroimage.2024.120608_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102897","article-title":"Multi-view hierarchical split network for brain tumor segmentation","volume":"69","author":"Xiao","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.neuroimage.2024.120608_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.107099","article-title":"Efficient combination of CNN and transformer for dual-teacher uncertainty-guided semi-supervised medical image segmentation","volume":"226","author":"Xiao","year":"2022","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.neuroimage.2024.120608_b45","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"171","article-title":"Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation","author":"Xie","year":"2021"},{"key":"10.1016\/j.neuroimage.2024.120608_b46","doi-asserted-by":"crossref","first-page":"97032","DOI":"10.1109\/ACCESS.2020.2993504","article-title":"Hippocampus segmentation for preterm and aging brains using 3D densely connected fully convolutional networks","volume":"8","author":"Zeng","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.neuroimage.2024.120608_b47","series-title":"International Conference on Machine Learning","first-page":"7324","article-title":"Making convolutional networks shift-invariant again","author":"Zhang","year":"2019"},{"issue":"2","key":"10.1016\/j.neuroimage.2024.120608_b48","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1109\/TMI.2020.3034995","article-title":"Inter-slice context residual learning for 3D medical image segmentation","volume":"40","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"doi-asserted-by":"crossref","unstructured":"Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P.H., et al., 2021. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 6881\u20136890.","key":"10.1016\/j.neuroimage.2024.120608_b49","DOI":"10.1109\/CVPR46437.2021.00681"},{"year":"2024","author":"Zhong","series-title":"PMFSNet: Polarized multi-scale feature self-attention network for lightweight medical image segmentation","key":"10.1016\/j.neuroimage.2024.120608_b50"},{"key":"10.1016\/j.neuroimage.2024.120608_b51","first-page":"3","article-title":"Unet++: A nested u-net architecture for medical image segmentation","author":"Zhou","year":"2018"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811924001034?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811924001034?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T23:48:27Z","timestamp":1725752907000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811924001034"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":51,"alternative-id":["S1053811924001034"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2024.120608","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Light3DHS: A lightweight 3D hippocampus segmentation method using multiscale convolution attention and vision transformer","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2024.120608","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"120608"}}