{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T12:33:35Z","timestamp":1726490015764},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,1,29]],"date-time":"2023-01-29T00:00:00Z","timestamp":1674950400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["AG062677","AG063911","C06 RR018898","NS100620","P50 AG016574","R01 AG056366","R01 NS097495","R01 AG034676","R01 AG041851","R37 AG011378","U01 AG006786"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000871","name":"Mayo Clinic","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000871","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007048","name":"Mayo Foundation for Medical Education and Research","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100007048","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100015595","name":"GHR Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100015595","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100016293","name":"Elsie and Marvin Dekelboum Family Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100016293","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.neuroimage.2023.119912","type":"journal-article","created":{"date-parts":[[2023,1,31]],"date-time":"2023-01-31T03:40:11Z","timestamp":1675136411000},"page":"119912","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":16,"special_numbering":"C","title":["Cross\u2013scanner harmonization methods for structural MRI may need further work: A comparison study"],"prefix":"10.1016","volume":"269","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5746-0994","authenticated-orcid":false,"given":"Robel K.","family":"Gebre","sequence":"first","affiliation":[]},{"given":"Matthew L.","family":"Senjem","sequence":"additional","affiliation":[]},{"given":"Sheelakumari","family":"Raghavan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1466-8357","authenticated-orcid":false,"given":"Christopher G.","family":"Schwarz","sequence":"additional","affiliation":[]},{"given":"Jeffery L.","family":"Gunter","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2266-6746","authenticated-orcid":false,"given":"Ekaterina I.","family":"Hofrenning","sequence":"additional","affiliation":[]},{"given":"Robert I.","family":"Reid","sequence":"additional","affiliation":[]},{"given":"Kejal","family":"Kantarci","sequence":"additional","affiliation":[]},{"given":"Jonathan","family":"Graff-Radford","sequence":"additional","affiliation":[]},{"given":"David S.","family":"Knopman","sequence":"additional","affiliation":[]},{"given":"Ronald C.","family":"Petersen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7916-622X","authenticated-orcid":false,"suffix":"Jr","given":"Clifford R.","family":"Jack","sequence":"additional","affiliation":[]},{"given":"Prashanthi","family":"Vemuri","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2023.119912_bib0001","article-title":"Deep generative medical image harmonization for improving cross-site generalization in deep learning predictors","author":"Bashyam","year":"2021","journal-title":"J. Magn. Reson. Imaging."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0002","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2020.117129","article-title":"Longitudinal ComBat: a method for harmonizing longitudinal multi-scanner imaging data","volume":"220","author":"Beer","year":"2020","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0003","series-title":"Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition","first-page":"8789","article-title":"StarGAN: unified generative adversarial networks for multi-domain image-to-image translation","author":"Choi","year":"2018"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0004","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-020-66110-w","article-title":"Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies","volume":"10","author":"Da-ano","year":"2020","journal-title":"Sci. Rep."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0005","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2020.117689","article-title":"Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal","volume":"228","author":"Dinsdale","year":"2021","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0006","first-page":"2121","article-title":"Adaptive subgradient methods for online learning and stochastic optimization","volume":"12","author":"Duchi","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0007","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.neuroimage.2017.11.024","article-title":"Harmonization of cortical thickness measurements across scanners and sites","volume":"167","author":"Fortin","year":"2018","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0008","doi-asserted-by":"crossref","unstructured":"Gatys, L.A., Ecker, A.S., Bethge, M., 2015. A neural algorithm of artistic style.","DOI":"10.1167\/16.12.326"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0009","unstructured":"Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial networks."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102136","article-title":"Autoencoder based self-supervised test-time adaptation for medical image analysis","volume":"72","author":"He","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0011","doi-asserted-by":"crossref","unstructured":"He, Y., Carass, A., Zuo, L., Dewey, B.E., Prince, J.L., 2020. Self domain adapted network.","DOI":"10.1007\/978-3-030-59710-8_43"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2021.118751","article-title":"NeuroImage Reliability of structural MRI measurements\u00a0: the effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream","volume":"246","author":"Hedges","year":"2022","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0013","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2016. Image-to-image translation with conditional adversarial networks.","DOI":"10.1109\/CVPR.2017.632"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0014","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1093\/biostatistics\/kxj037","article-title":"Adjusting batch effects in microarray expression data using empirical Bayes methods","volume":"8","author":"Johnson","year":"2007","journal-title":"Biostatistics"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0015","unstructured":"Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0016","series-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","first-page":"313","article-title":"Style transfer using generative adversarial networks for multi-site MRI harmonization","author":"Liu Mengtingand Maiti","year":"2021"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0017","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1038\/tpj.2010.57","article-title":"A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data","volume":"10","author":"Luo","year":"2010","journal-title":"Pharmacogenomics J."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0019","unstructured":"Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0020","doi-asserted-by":"crossref","first-page":"1072","DOI":"10.1002\/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M","article-title":"On standardizing the MR image intensity scale","volume":"42","author":"Ny\u00fa","year":"1999","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0022","doi-asserted-by":"crossref","unstructured":"Pagani, E., Storelli, L., Pantano, P., Petsas, N., Tedeschi, G., Gallo, A., Stefano, N.De, Battaglini, M., Rocca, M.A., Filippi, M., 2022. Multicenter data harmonization for regional brain atrophy and application in multiple sclerosis. https:\/\/doi.org\/10.1007\/s00415-022-11387-2","DOI":"10.1007\/s00415-022-11387-2"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0023","doi-asserted-by":"crossref","first-page":"889","DOI":"10.1212\/WNL.0b013e3181f11d85","article-title":"Prevalence of mild cognitive impairment is higher in men","volume":"75","author":"Petersen","year":"2010","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0024","article-title":"Evaluating the impact of intensity normalization on MR image synthesis","volume":"10949","author":"Reinhold","year":"2019","journal-title":"Proc. SPIE\u2013the Int. Soc. Opt. Eng."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0025","doi-asserted-by":"crossref","first-page":"802","DOI":"10.1016\/j.nicl.2016.05.017","article-title":"A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity","volume":"11","author":"Schwarz","year":"2016","journal-title":"NeuroImage Clin."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0026","doi-asserted-by":"crossref","DOI":"10.1186\/s12859-015-0478-3","article-title":"Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat","volume":"16","author":"Stein","year":"2015","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0027","doi-asserted-by":"crossref","first-page":"e453","DOI":"10.7717\/peerj.453","article-title":"scikit-image: image processing in {P}ython","volume":"2","author":"van der Walt","year":"2014","journal-title":"PeerJ"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0028","doi-asserted-by":"crossref","DOI":"10.3389\/fnagi.2021.746982","article-title":"Inter- and intra-scanner variability of automated brain volumetry on three magnetic resonance imaging systems in Alzheimer's disease and controls","volume":"13","author":"Wittens","year":"2021","journal-title":"Front. Aging Neurosci."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0029","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2020.117242","article-title":"Intensity warping for multisite MRI harmonization","volume":"223","author":"Wrobel","year":"2020","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0030","doi-asserted-by":"crossref","first-page":"1481","DOI":"10.1073\/pnas.1719747115","article-title":"Statistical tests and identifiability conditions for pooling and analyzing multisite datasets","volume":"115","author":"Zhou","year":"2018","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"key":"10.1016\/j.neuroimage.2023.119912_bib0031","doi-asserted-by":"crossref","unstructured":"Zhu, J.-Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks.","DOI":"10.1109\/ICCV.2017.244"},{"key":"10.1016\/j.neuroimage.2023.119912_bib0032","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2021.118569","article-title":"Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory","volume":"243","author":"Zuo","year":"2021","journal-title":"Neuroimage"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811923000605?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811923000605?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,14]],"date-time":"2024-05-14T18:46:53Z","timestamp":1715712413000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811923000605"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":30,"alternative-id":["S1053811923000605"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2023.119912","relation":{},"ISSN":["1053-8119"],"issn-type":[{"value":"1053-8119","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Cross\u2013scanner harmonization methods for structural MRI may need further work: A comparison study","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2023.119912","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"119912"}}