{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T07:12:24Z","timestamp":1721632344843},"reference-count":81,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,10,31]],"date-time":"2022-10-31T00:00:00Z","timestamp":1667174400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1016\/j.neuroimage.2022.119726","type":"journal-article","created":{"date-parts":[[2022,11,9]],"date-time":"2022-11-09T01:52:23Z","timestamp":1667958743000},"page":"119726","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["An automated pipeline for extracting histological stain area fraction for voxelwise quantitative MRI-histology comparisons"],"prefix":"10.1016","volume":"264","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7881-8214","authenticated-orcid":false,"given":"Daniel Z.L.","family":"Kor","sequence":"first","affiliation":[]},{"given":"Saad","family":"Jbabdi","sequence":"additional","affiliation":[]},{"given":"Istvan N.","family":"Huszar","sequence":"additional","affiliation":[]},{"given":"Jeroen","family":"Mollink","sequence":"additional","affiliation":[]},{"given":"Benjamin C.","family":"Tendler","sequence":"additional","affiliation":[]},{"given":"Sean","family":"Foxley","sequence":"additional","affiliation":[]},{"given":"Chaoyue","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Connor","family":"Scott","sequence":"additional","affiliation":[]},{"given":"Adele","family":"Smart","sequence":"additional","affiliation":[]},{"given":"Olaf","family":"Ansorge","sequence":"additional","affiliation":[]},{"given":"Menuka","family":"Pallebage-Gamarallage","sequence":"additional","affiliation":[]},{"given":"Karla L.","family":"Miller","sequence":"additional","affiliation":[]},{"given":"Amy F.D.","family":"Howard","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0001","doi-asserted-by":"crossref","DOI":"10.1101\/cshperspect.a006213","article-title":"Brain Imaging in Alzheimer Disease","volume":"2","author":"Johnson","year":"2012","journal-title":"Cold Spring Harb. Perspect. Med."},{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0002","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1038\/nrneurol.2018.14","article-title":"The current role of MRI in differentiating multiple sclerosis from its imaging mimics","volume":"14","author":"Geraldes","year":"2018","journal-title":"Nat. Rev. Neurol."},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0003","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1186\/s12883-016-0672-6","article-title":"The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review","volume":"16","author":"Grolez","year":"2016","journal-title":"BMC Neurol."},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0004","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1146\/annurev-cellbio-100913-013101","article-title":"Myelination of the Nervous System: mechanisms and Functions","volume":"30","author":"Nave","year":"2014","journal-title":"Annu. Rev. Cell Dev. Biol."},{"issue":"7","key":"10.1016\/j.neuroimage.2022.119726_bib0005","doi-asserted-by":"crossref","first-page":"1050","DOI":"10.1038\/jcbfm.2013.46","article-title":"Assessing white matter ischemic damage in dementia patients by measurement of myelin proteins","volume":"33","author":"Barker","year":"2013","journal-title":"J. Cereb. Blood Flow Metab."},{"issue":"3","key":"10.1016\/j.neuroimage.2022.119726_bib0006","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1007\/s004410051013","article-title":"Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain","volume":"291","author":"Ulfig","year":"1998","journal-title":"Cell Tissue Res."},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0007","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1038\/pr.2014.55","article-title":"Impact of daily high-dose caffeine exposure on developing white matter of the immature ovine brain","volume":"76","author":"Atik","year":"2014","journal-title":"Pediatr. Res."},{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0008","doi-asserted-by":"crossref","first-page":"428","DOI":"10.1111\/j.1750-3639.2010.00466.x","article-title":"Axonal loss and neurofilament phosphorylation changes accompany lesion development and clinical progression in multiple sclerosis","volume":"21","author":"Schirmer","year":"2011","journal-title":"Brain Pathol."},{"issue":"3","key":"10.1016\/j.neuroimage.2022.119726_bib0009","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1007\/s11055-016-0231-z","article-title":"Brain Microglia and Microglial Markers","volume":"46","author":"Korzhevskii","year":"2016","journal-title":"Neurosci. Behav. Physiol."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0010","doi-asserted-by":"crossref","DOI":"10.3389\/fncel.2020.00198","article-title":"Overview of General and Discriminating Markers of Differential Microglia Phenotypes","volume":"14","author":"Jurga","year":"2020","journal-title":"Front. Cell Neurosci."},{"issue":"12","key":"10.1016\/j.neuroimage.2022.119726_bib0011","doi-asserted-by":"crossref","first-page":"3599","DOI":"10.1093\/brain\/awr278","article-title":"Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla","volume":"134","author":"Bagnato","year":"2011","journal-title":"Brain"},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0012","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0210888","article-title":"Iba-1-\/CD68+ microglia are a prominent feature of age-associated deep subcortical white matter lesions","volume":"14","author":"Waller","year":"2019","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0013","doi-asserted-by":"crossref","first-page":"488","DOI":"10.3389\/fncel.2018.00488","article-title":"Microglia in Neurological Diseases: a Road Map to Brain-Disease Dependent-Inflammatory Response","volume":"12","author":"Bachiller","year":"2018","journal-title":"Front. Cell Neurosci."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0014","doi-asserted-by":"crossref","first-page":"242","DOI":"10.3389\/fnagi.2017.00242","article-title":"The Dual Role of Microglia in ALS: mechanisms and Therapeutic Approaches","volume":"9","author":"Geloso","year":"2017","journal-title":"Front. Aging Neurosci."},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0015","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1186\/s12868-018-0416-1","article-title":"Dissecting the pathobiology of altered MRI signal in amyotrophic lateral sclerosis: a post mortem whole brain sampling strategy for the integration of ultra-high-field MRI and quantitative neuropathology","volume":"19","author":"Pallebage-Gamarallage","year":"2018","journal-title":"BMC Neurosci."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0016","doi-asserted-by":"crossref","first-page":"e73153","DOI":"10.7554\/eLife.73153","article-title":"The Digital Brain Bank, an open access platform for post-mortem imaging datasets","volume":"11","author":"Tendler","year":"2022","journal-title":"Elife"},{"issue":"2","key":"10.1016\/j.neuroimage.2022.119726_bib0017","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1002\/ana.24318","article-title":"Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy","volume":"77","author":"Goubran","year":"2015","journal-title":"Ann. Neurol."},{"issue":"12","key":"10.1016\/j.neuroimage.2022.119726_bib0018","doi-asserted-by":"crossref","first-page":"e84162","DOI":"10.1371\/journal.pone.0084162","article-title":"Deep Gray Matter Demyelination Detected by Magnetization Transfer Ratio in the Cuprizone Model","volume":"8","author":"Fj\u00e6r","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0019","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.neuint.2015.02.006","article-title":"Magnetization transfer ratio does not correlate to myelin content in the brain in the MOG-EAE mouse model","volume":"83-84","author":"Fj\u00e6r","year":"2015","journal-title":"Neurochem. Int."},{"issue":"6","key":"10.1016\/j.neuroimage.2022.119726_bib0020","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1111\/nan.12341","article-title":"Brain iron accumulation in Wilson disease: a post mortem 7 Tesla MRI - histopathological study","volume":"43","author":"Dusek","year":"2017","journal-title":"Neuropathol. Appl. Neurobiol."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0021","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.neuint.2017.10.004","article-title":"Quantitative temporal changes in DTI values coupled with histological properties in cuprizone-induced demyelination and remyelination","volume":"119","author":"Yano","year":"2018","journal-title":"Neurochem. Int."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0022","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2020.117216","article-title":"Methods for quantitative susceptibility and R2* mapping in whole post-mortem brains at 7T applied to amyotrophic lateral sclerosis","volume":"222","author":"Wang","year":"2020","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0023","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.neuint.2019.02.017","article-title":"Correlative study using structural MRI and super-resolution microscopy to detect structural alterations induced by long-term optogenetic stimulation of striatal medium spiny neurons","volume":"125","author":"Abe","year":"2019","journal-title":"Neurochem. Int."},{"issue":"6","key":"10.1016\/j.neuroimage.2022.119726_bib0024","doi-asserted-by":"crossref","first-page":"570","DOI":"10.1111\/nan.12555","article-title":"White matter changes in the perforant path area in patients with amyotrophic lateral sclerosis","volume":"45","author":"Mollink","year":"2019","journal-title":"Neuropathol. Appl. Neurobiol."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2021.117744","article-title":"Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology","volume":"230","author":"Lazari","year":"2021","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0026","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2020.117561","article-title":"Myelin quantification with MRI: a systematic review of accuracy and reproducibility","volume":"226","author":"van der Weijden","year":"2021","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0027","doi-asserted-by":"crossref","unstructured":"Mancini M., Karakuzu A., Cohen-Adad J., Cercignani M., Nichols T.E., Stikov N. An Interactive Meta-Analysis of MRI Biomarkers of Myelin. Jbabdi S, Baker CI, Jbabdi S, Does M, eds. eLife. 2020;9:e61523. doi:10.7554\/eLife.61523","DOI":"10.7554\/eLife.61523"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0028","doi-asserted-by":"crossref","DOI":"10.3389\/fnana.2019.00068","article-title":"Matching ex vivo MRI With Iron Histology: pearls and Pitfalls","volume":"13","author":"De Barros","year":"2019","journal-title":"Front. Neuroanat."},{"issue":"5","key":"10.1016\/j.neuroimage.2022.119726_bib0029","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1001\/archneurol.2009.57","article-title":"Diffusely Abnormal White Matter in Chronic Multiple Sclerosis: imaging and Histopathologic Analysis","volume":"66","author":"Seewann","year":"2009","journal-title":"Arch. Neurol."},{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0030","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.3233\/JAD-180317","article-title":"Postmortem T2*- Weighted MRI Imaging of Cortical Iron Reflects Severity of Alzheimer's Disease","volume":"65","author":"Bulk","year":"2018","journal-title":"J. Alzheimers Dis."},{"issue":"8","key":"10.1016\/j.neuroimage.2022.119726_bib0031","doi-asserted-by":"crossref","DOI":"10.1002\/nbm.3727","article-title":"Susceptibility-sensitive MRI of multiple sclerosis lesions and the impact of normal-appearing white matter changes","volume":"30","author":"Wiggermann","year":"2017","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0032","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.neuroimage.2018.06.007","article-title":"The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study","volume":"179","author":"Hametner","year":"2018","journal-title":"Neuroimage"},{"issue":"3","key":"10.1016\/j.neuroimage.2022.119726_bib0033","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0193839","article-title":"Untangling the R2* contrast in multiple sclerosis: a combined MRI-histology study at 7.0 Tesla","volume":"13","author":"Bagnato","year":"2018","journal-title":"PLoS One"},{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0034","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1369\/jhc.2007.950170","article-title":"Multiple immunoenzyme staining: methods and visualizations for the observation with spectral imaging","volume":"56","author":"van der Loos","year":"2008","journal-title":"J. Histochem. Cytochem."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0035","series-title":"Bancroft's Theory and Practice of Histological Techniques","author":"Suvarna","year":"2019"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0036","first-page":"23","article-title":"Whole slide imaging in pathology: advantages, limitations, and emerging perspectives","volume":"7","author":"Farahani","year":"2015","journal-title":"PLMI"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0037","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1109\/RBME.2009.2034865","article-title":"Histopathological Image Analysis: a Review","volume":"2","author":"Gurcan","year":"2009","journal-title":"IEEE Rev. Biomed. Eng."},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0038","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1109\/MSP.2014.2346443","article-title":"Automated Histology Analysis: opportunities for signal processing","volume":"32","author":"McCann","year":"2015","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0039","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.media.2016.06.037","article-title":"Image analysis and machine learning in digital pathology: challenges and opportunities","volume":"33","author":"Madabhushi","year":"2016","journal-title":"Med. Image Anal."},{"issue":"5","key":"10.1016\/j.neuroimage.2022.119726_bib0040","first-page":"484","article-title":"Blocking Endogenous Peroxidases in Immunohistochemistry: a Mandatory","volume":"19","author":"Bussolati","year":"2011","journal-title":"Yet Also Subtle Measure. Appl. Immunohistochem. Mol. Morphol."},{"issue":"7","key":"10.1016\/j.neuroimage.2022.119726_bib0041","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1177\/29.7.7021672","article-title":"Retrospective demonstration of endogenous peroxidase activity in plastic-embedded tissues conventionally prepared for electron microscopy","volume":"29","author":"Del Cerro","year":"1981","journal-title":"J. Histochem. Cytochem."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0042","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2020.117113","article-title":"Use of multi-flip angle measurements to account for transmit inhomogeneity and non-Gaussian diffusion in DW-SSFP","volume":"220","author":"Tendler","year":"2020","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0043","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/S0006-3495(94)80775-1","article-title":"MR diffusion tensor spectroscopy and imaging","volume":"66","author":"Basser","year":"1994","journal-title":"Biophys. J."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0044","doi-asserted-by":"crossref","unstructured":"Huszar I.N., Pallebage-Gamarallage M., Foxley S., et\u00a0al. Tensor Image Registration Library: automated Non-Linear Registration of Sparsely Sampled Histological Specimens to Post-Mortem MRI of the Whole Human Brain.; 2019:849570. doi:10.1101\/849570","DOI":"10.1101\/849570"},{"issue":"2","key":"10.1016\/j.neuroimage.2022.119726_bib0045","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1006\/nimg.2002.1132","article-title":"Improved optimization for the robust and accurate linear registration and motion correction of brain images","volume":"17","author":"Jenkinson","year":"2002","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0046","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/42.906424","article-title":"Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm","volume":"20","author":"Zhang","year":"2001","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0047","first-page":"291","article-title":"Quantification of histochemical staining by color deconvolution","volume":"23","author":"Ruifrok","year":"2001","journal-title":"Anal. Quant. Cytol. Histol."},{"issue":"10","key":"10.1016\/j.neuroimage.2022.119726_bib0048","doi-asserted-by":"crossref","first-page":"1485","DOI":"10.1093\/bioinformatics\/btaa847","article-title":"Colour deconvolution: stain unmixing in histological imaging","volume":"37","author":"Landini","year":"2021","journal-title":"Bioinformatics"},{"issue":"2","key":"10.1016\/j.neuroimage.2022.119726_bib0049","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1111\/his.13079","article-title":"Colour in digital pathology: a review","volume":"70","author":"Clarke","year":"2017","journal-title":"Histopathology"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0050","first-page":"165","article-title":"Automatic color unmixing of IHC stained whole slide images","volume":"10581","author":"Geijs","year":"2018"},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0051","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/TSMC.1979.4310076","article-title":"A Threshold Selection Method from Gray-Level Histograms","volume":"9","author":"Otsu","year":"1979","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0052","doi-asserted-by":"crossref","first-page":"472","DOI":"10.1016\/j.apsusc.2015.05.033","article-title":"An improved Otsu method using the weighted object variance for defect detection","volume":"349","author":"Yuan","year":"2015","journal-title":"Appl. Surf. Sci."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0053","first-page":"536","article-title":"On the Theory of Filter Amplifiers","volume":"7","author":"Butterworth","year":"1930","journal-title":"Exp. Wirel. Wirel. Engineer"},{"issue":"3","key":"10.1016\/j.neuroimage.2022.119726_bib0054","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1038\/s41592-019-0686-2","article-title":"SciPy 1.0: fundamental algorithms for scientific computing in Python","volume":"17","author":"Virtanen","year":"2020","journal-title":"Nat. Methods"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0055","series-title":"International Encyclopedia of Statistical Science","first-page":"1248","article-title":"Robust Statistics","author":"Huber","year":"2011"},{"issue":"2","key":"10.1016\/j.neuroimage.2022.119726_bib0056","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1002\/wics.1346","article-title":"Variable importance in regression models","volume":"7","author":"Gr\u00f6mping","year":"2015","journal-title":"Wiley Interdiscip. Rev. Comput. Stat."},{"issue":"9","key":"10.1016\/j.neuroimage.2022.119726_bib0057","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1002\/acn3.445","article-title":"Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?","volume":"4","author":"Grussu","year":"2017","journal-title":"Ann. Clin. Transl. Neurol."},{"issue":"10","key":"10.1016\/j.neuroimage.2022.119726_bib0058","doi-asserted-by":"crossref","first-page":"1204","DOI":"10.3390\/cells8101204","article-title":"Quantitative Imaging of White and Gray Matter Remyelination in the Cuprizone Demyelination Model Using the Macromolecular Proton Fraction","volume":"8","author":"Khodanovich","year":"2019","journal-title":"Cells"},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0059","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13195-017-0329-8","article-title":"Diffusion kurtosis imaging allows the early detection and longitudinal follow-up of amyloid-\u03b2-induced pathology","volume":"10","author":"Praet","year":"2018","journal-title":"Alzheimer's Res. Ther."},{"issue":"7","key":"10.1016\/j.neuroimage.2022.119726_bib0060","doi-asserted-by":"crossref","first-page":"1178","DOI":"10.1002\/acn3.793","article-title":"White matter mean diffusivity correlates with myelination in tuberous sclerosis complex","volume":"6","author":"Peters","year":"2019","journal-title":"Ann. Clin. Transl. Neurol."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0061","article-title":"Quantitative Ex Vivo MRI Changes due to Progressive Formalin Fixation in Whole Human Brain Specimens: longitudinal Characterization of Diffusion, Relaxometry, and Myelin Water Fraction Measurements at 3T","volume":"5","author":"Shatil","year":"2018","journal-title":"Front. Med. (Lausanne)"},{"issue":"3","key":"10.1016\/j.neuroimage.2022.119726_bib0062","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1016\/j.neuroimage.2009.01.008","article-title":"High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession","volume":"46","author":"McNab","year":"2009","journal-title":"Neuroimage"},{"issue":"2","key":"10.1016\/j.neuroimage.2022.119726_bib0063","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1016\/j.neuroimage.2014.08.014","article-title":"Improving diffusion-weighted imaging of post-mortem human brains: SSFP at 7 T","volume":"102","author":"Foxley","year":"2014","journal-title":"Neuroimage"},{"issue":"6","key":"10.1016\/j.neuroimage.2022.119726_bib0064","doi-asserted-by":"crossref","first-page":"1447","DOI":"10.1002\/mrm.20488","article-title":"Formalin fixation alters water diffusion coefficient magnitude but not anisotropy in infarcted brain","volume":"53","author":"Sun","year":"2005","journal-title":"Magn. Reson. Med."},{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0065","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1002\/mrm.10605","article-title":"Relative indices of water diffusion anisotropy are equivalent in live and formalin-fixed mouse brains","volume":"50","author":"Sun","year":"2003","journal-title":"Magn. Reson. Med."},{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0066","doi-asserted-by":"crossref","first-page":"e3941","DOI":"10.1002\/nbm.3941","article-title":"Ex vivo diffusion MRI of the human brain: technical challenges and recent advances","volume":"32","author":"Roebroeck","year":"2019","journal-title":"NMR Biomed."},{"issue":"2","key":"10.1016\/j.neuroimage.2022.119726_bib0067","doi-asserted-by":"crossref","first-page":"e31814","DOI":"10.1371\/journal.pone.0031814","article-title":"An Automated Method to Quantify Microglia Morphology and Application to Monitor Activation State Longitudinally In Vivo","volume":"7","author":"Kozlowski","year":"2012","journal-title":"PLoS One"},{"issue":"7\u20138","key":"10.1016\/j.neuroimage.2022.119726_bib0068","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1002\/nbm.782","article-title":"The basis of anisotropic water diffusion in the nervous system \u2013 a technical review","volume":"15","author":"Beaulieu","year":"2002","journal-title":"NMR Biomed."},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0069","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.neuroimage.2014.02.026","article-title":"Myelin and iron concentration in the human brain: a quantitative study of MRI contrast","volume":"93","author":"St\u00fcber","year":"2014","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0070","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1002\/mrm.25590","article-title":"MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain","volume":"75","author":"Hakkarainen","year":"2016","journal-title":"Magn. Reson. Med."},{"issue":"6","key":"10.1016\/j.neuroimage.2022.119726_bib0071","doi-asserted-by":"crossref","first-page":"1096","DOI":"10.3174\/ajnr.A5168","article-title":"Myelin Detection Using Rapid Quantitative MR Imaging Correlated to Macroscopically Registered Luxol Fast Blue\u2013Stained Brain Specimens","volume":"38","author":"Warntjes","year":"2017","journal-title":"AJNR Am. J. Neuroradiol."},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0072","doi-asserted-by":"crossref","first-page":"1576","DOI":"10.1038\/s41598-017-01747-8","article-title":"Characterizing microglia activation: a spatial statistics approach to maximize information extraction","volume":"7","author":"Davis","year":"2017","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0073","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1186\/s12868-017-0367-y","article-title":"White matter damage and systemic inflammation in Parkinson's disease","volume":"18","author":"Chiang","year":"2017","journal-title":"BMC Neurosci."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0074","doi-asserted-by":"crossref","DOI":"10.3389\/fnhum.2019.00464","article-title":"Neuroinflammation and White Matter Alterations in Obesity Assessed by Diffusion Basis Spectrum Imaging","volume":"13","author":"Samara","year":"2020","journal-title":"Front. Hum. Neurosci."},{"key":"10.1016\/j.neuroimage.2022.119726_bib0075","doi-asserted-by":"crossref","first-page":"13874","DOI":"10.1038\/s41598-019-50432-5","article-title":"Extra-axonal restricted diffusion as an in-vivo marker of reactive microglia","volume":"9","author":"Taquet","year":"2019","journal-title":"Sci. Rep."},{"issue":"21","key":"10.1016\/j.neuroimage.2022.119726_bib0076","doi-asserted-by":"crossref","first-page":"eabq2923","DOI":"10.1126\/sciadv.abq2923","article-title":"Mapping microglia and astrocyte activation in vivo using diffusion MRI","volume":"8","author":"Garcia-Hernandez","year":"2022","journal-title":"Sci. Adv."},{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0077","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1016\/j.neuroimage.2012.03.072","article-title":"NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain","volume":"61","author":"Zhang","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2022.119726_bib0078","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2022.119452","article-title":"Identifying microstructural changes in diffusion MRI; How to circumvent parameter degeneracy","volume":"260","author":"Rafipoor","year":"2022","journal-title":"Neuroimage"},{"issue":"4","key":"10.1016\/j.neuroimage.2022.119726_bib0079","doi-asserted-by":"crossref","first-page":"e35241","DOI":"10.1371\/journal.pone.0035241","article-title":"Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7\u00a0tesla MRI and pathology","volume":"7","author":"Kwan","year":"2012","journal-title":"PLoS One"},{"issue":"1","key":"10.1016\/j.neuroimage.2022.119726_bib0080","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1093\/brain\/awy296","article-title":"Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions","volume":"142","author":"Kaunzner","year":"2019","journal-title":"Brain"},{"issue":"2","key":"10.1016\/j.neuroimage.2022.119726_bib0081","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1148\/radiol.10100495","article-title":"Quantitative MR Imaging of Brain Iron: a Postmortem Validation Study","volume":"257","author":"Langkammer","year":"2010","journal-title":"Radiology"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811922008473?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811922008473?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T03:24:56Z","timestamp":1715311496000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811922008473"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12]]},"references-count":81,"alternative-id":["S1053811922008473"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2022.119726","relation":{"has-preprint":[{"id-type":"doi","id":"10.1101\/2022.02.10.479718","asserted-by":"object"}]},"ISSN":["1053-8119"],"issn-type":[{"value":"1053-8119","type":"print"}],"subject":[],"published":{"date-parts":[[2022,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An automated pipeline for extracting histological stain area fraction for voxelwise quantitative MRI-histology comparisons","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2022.119726","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Authors. Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"119726"}}