{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,24]],"date-time":"2025-04-24T01:40:50Z","timestamp":1745458850584},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,1,4]],"date-time":"2022-01-04T00:00:00Z","timestamp":1641254400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1016\/j.neuroimage.2022.118871","type":"journal-article","created":{"date-parts":[[2022,1,5]],"date-time":"2022-01-05T08:26:03Z","timestamp":1641371163000},"page":"118871","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":75,"special_numbering":"C","title":["Accurate brain\u2010age models for routine clinical MRI examinations"],"prefix":"10.1016","volume":"249","author":[{"given":"David A.","family":"Wood","sequence":"first","affiliation":[]},{"given":"Sina","family":"Kafiabadi","sequence":"additional","affiliation":[]},{"given":"Ayisha Al","family":"Busaidi","sequence":"additional","affiliation":[]},{"given":"Emily","family":"Guilhem","sequence":"additional","affiliation":[]},{"given":"Antanas","family":"Montvila","sequence":"additional","affiliation":[]},{"given":"Jeremy","family":"Lynch","sequence":"additional","affiliation":[]},{"given":"Matthew","family":"Townend","sequence":"additional","affiliation":[]},{"given":"Siddharth","family":"Agarwal","sequence":"additional","affiliation":[]},{"given":"Asif","family":"Mazumder","sequence":"additional","affiliation":[]},{"given":"Gareth J.","family":"Barker","sequence":"additional","affiliation":[]},{"given":"Sebastien","family":"Ourselin","sequence":"additional","affiliation":[]},{"given":"James H.","family":"Cole","sequence":"additional","affiliation":[]},{"given":"Thomas C.","family":"Booth","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2022.118871_bib0002","unstructured":"ACR. ACR\u2013ASNR\u2013SPR practice parameter for the performance and interpretation of magnetic resonance imaging (MRI) of the brain. https:\/\/www.acr.org\/-\/media\/ACR\/Files\/Practice-Parameters\/MR-Brain.pdf. Published 2019. 2020-02-01."},{"key":"10.1016\/j.neuroimage.2022.118871_bib0005","unstructured":"Brett, M., Markiewicz, C., Hanke, M., Cote, M., Cipollini, B., (2020). Nipy\/nibabel: 3.2.1 (Version 3.2.1). Zenodo. http:\/\/doi.org\/10.5281\/zenodo.4295521"},{"issue":"4","key":"10.1016\/j.neuroimage.2022.118871_bib0006","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1002\/ana.24367","article-title":"Prediction of brain age suggests accelerated atrophy after traumatic brain injury","volume":"77","author":"Cole","year":"2015","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.neuroimage.2022.118871_bib0007","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.neuroimage.2017.07.059","article-title":"Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker","volume":"163","author":"Cole","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2022.118871_bib47","doi-asserted-by":"crossref","DOI":"10.1002\/alz.037378","article-title":"Brain-age predicts subsequent dementia in memory clinic patients","volume":"16","author":"Biondo","year":"2020","journal-title":"Alzheimer\u2019s & Dementia"},{"issue":"12","key":"10.1016\/j.neuroimage.2022.118871_bib0008","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1016\/j.tins.2017.10.001","article-title":"Predicting age using neuroimaging: innovative brain ageing biomarkers","volume":"40","author":"Cole","year":"2017","journal-title":"Trends Neurosci."},{"issue":"5","key":"10.1016\/j.neuroimage.2022.118871_bib0009","doi-asserted-by":"crossref","first-page":"1385","DOI":"10.1038\/mp.2017.62","article-title":"Brain age predicts mortality","volume":"23","author":"Cole","year":"2018","journal-title":"Mol. Psychiatry"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0010","doi-asserted-by":"crossref","unstructured":"Cole, J.H., Lorenz, R., Geranmayeh, F., Wood, T., Hellyer, P., Williams, S., & Leech, R. (2018b). Active Acquisition for multimodal neuroimaging. https:\/\/wellcomeopenresearch.org\/articles\/3-145.","DOI":"10.12688\/wellcomeopenres.14918.1"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0011","article-title":"Commentary: correction procedures in brain-age prediction","volume":"26","author":"de Lange","year":"2020","journal-title":"NeuroImage: Clin."},{"key":"10.1016\/j.neuroimage.2022.118871_bib0012","series-title":"Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)","first-page":"4171","article-title":"BERT: pre-training of deep bidirectional transformers for language understanding","author":"Devlin","year":"2019"},{"issue":"3","key":"10.1016\/j.neuroimage.2022.118871_bib0014","doi-asserted-by":"crossref","first-page":"883","DOI":"10.1016\/j.neuroimage.2010.01.005","article-title":"Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters","volume":"50","author":"Franke","year":"2010","journal-title":"Neuroimage"},{"issue":"4","key":"10.1016\/j.neuroimage.2022.118871_bib0015","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1024\/1662-9647\/a000074","article-title":"Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer's disease","volume":"25","author":"Franke","year":"2012","journal-title":"GeroPsych: J. Gerontopsychol. Geriatr. Psychiatry"},{"issue":"9","key":"10.1016\/j.neuroimage.2022.118871_bib0016","doi-asserted-by":"crossref","first-page":"e489","DOI":"10.1016\/S2589-7500(20)30186-2","article-title":"The myth of generalisability in clinical research and machine learning in health care","volume":"2","author":"Futoma","year":"2020","journal-title":"Lancet Digital Health"},{"issue":"6","key":"10.1016\/j.neuroimage.2022.118871_bib0017","doi-asserted-by":"crossref","first-page":"e67346","DOI":"10.1371\/journal.pone.0067346","article-title":"BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease","volume":"8","author":"Gaser","year":"2013","journal-title":"PLoS ONE"},{"issue":"7825","key":"10.1016\/j.neuroimage.2022.118871_bib0019","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1038\/s41586-020-2649-2","article-title":"Array programming with NumPy","volume":"585","author":"Harris","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0020","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"issue":"8","key":"10.1016\/j.neuroimage.2022.118871_bib0021","doi-asserted-by":"crossref","first-page":"500","DOI":"10.1038\/s41568-018-0016-5","article-title":"Artificial intelligence in radiology","volume":"18","author":"Hosny","year":"2018","journal-title":"Nat. Rev. Cancer"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0022","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4700","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0023","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.neurobiolaging.2021.04.015","article-title":"Prediction of brain age from routine T2-weighted spin-echo brain magnetic resonance images with a deep convolutional neural network","volume":"105","author":"Hwang","year":"2021","journal-title":"Neurobiol. Aging"},{"issue":"17","key":"10.1016\/j.neuroimage.2022.118871_bib0024","doi-asserted-by":"crossref","first-page":"4952","DOI":"10.1002\/hbm.24750","article-title":"Automated brain extraction of multisequence MRI using artificial neural networks","volume":"40","author":"Isensee","year":"2019","journal-title":"Hum. Brain Mapp."},{"issue":"1","key":"10.1016\/j.neuroimage.2022.118871_bib0025","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-019-13163-9","article-title":"Brain age prediction using deep learning uncovers associated sequence variants","volume":"10","author":"J\u00f3nsson","year":"2019","journal-title":"Nat Commun"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0026","unstructured":"Kingma, D.P., & Ba, J. (2015, January). Adam: a method for stochastic optimization. In ICLR (Poster)."},{"key":"10.1016\/j.neuroimage.2022.118871_bib0027","first-page":"1","article-title":"How to read and review papers on machine learning and artificial intelligence in radiology: a survival guide to key methodological concepts","author":"Kocak","year":"2020","journal-title":"Eur. Radiol."},{"issue":"5","key":"10.1016\/j.neuroimage.2022.118871_bib0028","doi-asserted-by":"crossref","first-page":"1140","DOI":"10.1093\/schbul\/sbt142","article-title":"Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders","volume":"40","author":"Koutsouleris","year":"2014","journal-title":"Schizophr. Bull."},{"issue":"7553","key":"10.1016\/j.neuroimage.2022.118871_bib0029","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"3","key":"10.1016\/j.neuroimage.2022.118871_bib0030","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1016\/j.neurobiolaging.2010.07.013","article-title":"Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume?","volume":"33","author":"Lemaitre","year":"2012","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0031","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.jneumeth.2016.03.001","article-title":"The first step for neuroimaging data analysis: DICOM to NIfTI conversion","volume":"264","author":"Li","year":"2016","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0032","article-title":"Pydicom\/pydicom: pydicom 2.1.2 (Version v2.1.2)","author":"Mason","year":"2020","journal-title":"Zenodo"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0033","unstructured":"MONAI. Project monai, 2020. URL http:\/\/doi.org\/10.5281\/zenodo.4323059."},{"issue":"3","key":"10.1016\/j.neuroimage.2022.118871_bib0034","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1023\/A:1024068626366","article-title":"Inference for the generalization error","volume":"52","author":"Nadeau","year":"2003","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neuroimage.2022.118871_bib0035","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.eplepsyres.2017.03.007","article-title":"Structural brain changes in medically refractory focal epilepsy resemble premature brain aging","volume":"133","author":"Pardoe","year":"2017","journal-title":"Epilepsy Res."},{"key":"10.1016\/j.neuroimage.2022.118871_bib0036","series-title":"International conference on machine learning","first-page":"1310","article-title":"On the difficulty of training recurrent neural networks","author":"Pascanu","year":"2013"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0037","first-page":"8026","article-title":"PyTorch: an imperative style, high-performance deep learning library","volume":"32","author":"Paszke","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"3","key":"10.1016\/j.neuroimage.2022.118871_bib0038","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1212\/WNL.0b013e3181cb3e25","article-title":"Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization","volume":"74","author":"Petersen","year":"2010","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0039","unstructured":"Springenberg, J., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015). Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806."},{"key":"10.1016\/j.neuroimage.2022.118871_bib0040","series-title":"Proceedings of the 31st International Conference on Neural Information Processing Systems","first-page":"6000","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0041","series-title":"Proceedings of the Third Conference on Medical Imaging with Deep Learning, in PMLR","article-title":"Automated labelling using an attention model for radiology reports of MRI scans (ALARM)","volume":"121","author":"Wood","year":"2020"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0042","series-title":"Interpretable and Annotation-Efficient Learning for Medical Image Computing","first-page":"254","article-title":"Labelling imaging datasets on the basis of neuroradiology reports: a validation study","author":"Wood","year":"2020"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0044","first-page":"1","article-title":"Deep learning to automate the labelling of head MRI datasets for computer vision applications","author":"Wood","year":"2021","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.neuroimage.2022.118871_bib0046","series-title":"European conference on computer vision","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"},{"key":"10.1016\/j.neuroimage.2022.118871_bib0043","doi-asserted-by":"crossref","unstructured":"Wood, D.A., Kafiabadi, S., Busaidi, A.A., Guilhem, E., Montvila, A., Agarwal, S., & Booth, T.C. (2021a). Automated triaging of head MRI examinations using convolutional neural networks. arXiv preprint arXiv:2106.08176","DOI":"10.22541\/au.166636171.19660184\/v1"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811922000015?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811922000015?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T02:17:47Z","timestamp":1715307467000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811922000015"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":41,"alternative-id":["S1053811922000015"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2022.118871","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2022,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Accurate brain\u2010age models for routine clinical MRI examinations","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2022.118871","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"118871"}}