{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T15:49:49Z","timestamp":1724428189564},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,5,18]],"date-time":"2021-05-18T00:00:00Z","timestamp":1621296000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100010269","name":"Wellcome Trust","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100010269","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000265","name":"Medical Research Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000265","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2021,8]]},"DOI":"10.1016\/j.neuroimage.2021.118189","type":"journal-article","created":{"date-parts":[[2021,5,20]],"date-time":"2021-05-20T01:55:07Z","timestamp":1621475707000},"page":"118189","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Integrating large-scale neuroimaging research datasets: Harmonisation of white matter hyperintensity measurements across Whitehall and UK Biobank datasets"],"prefix":"10.1016","volume":"237","author":[{"given":"Valentina","family":"Bordin","sequence":"first","affiliation":[]},{"given":"Ilaria","family":"Bertani","sequence":"additional","affiliation":[]},{"given":"Irene","family":"Mattioli","sequence":"additional","affiliation":[]},{"given":"Vaanathi","family":"Sundaresan","sequence":"additional","affiliation":[]},{"given":"Paul","family":"McCarthy","sequence":"additional","affiliation":[]},{"given":"Sana","family":"Suri","sequence":"additional","affiliation":[]},{"given":"Enik\u0151","family":"Zsoldos","sequence":"additional","affiliation":[]},{"given":"Nicola","family":"Filippini","sequence":"additional","affiliation":[]},{"given":"Abda","family":"Mahmood","sequence":"additional","affiliation":[]},{"given":"Luca","family":"Melazzini","sequence":"additional","affiliation":[]},{"given":"Maria Marcella","family":"Lagan\u00e0","sequence":"additional","affiliation":[]},{"given":"Giovanna","family":"Zamboni","sequence":"additional","affiliation":[]},{"given":"Archana","family":"Singh-Manoux","sequence":"additional","affiliation":[]},{"given":"Mika","family":"Kivim\u00e4ki","sequence":"additional","affiliation":[]},{"given":"Klaus P","family":"Ebmeier","sequence":"additional","affiliation":[]},{"given":"Giuseppe","family":"Baselli","sequence":"additional","affiliation":[]},{"given":"Mark","family":"Jenkinson","sequence":"additional","affiliation":[]},{"given":"Clare E","family":"Mackay","sequence":"additional","affiliation":[]},{"given":"Eugene P","family":"Duff","sequence":"additional","affiliation":[]},{"given":"Ludovica","family":"Griffanti","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2021.118189_bib0001","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.neuroimage.2017.10.034","article-title":"Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank","volume":"166","author":"Alfaro-Almagro","year":"2018","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0002","doi-asserted-by":"crossref","first-page":"1037","DOI":"10.1016\/j.neuroimage.2003.10.012","article-title":"Probabilistic segmentation of white matter lesions in MR imaging","volume":"21","author":"Anbeek","year":"2004","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0003","doi-asserted-by":"crossref","first-page":"934","DOI":"10.1016\/S1474-4422(16)30029-1","article-title":"Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study","volume":"15","author":"Arvanitakis","year":"2016","journal-title":"Lancet Neurol."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0004","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1007\/s10654-020-00633-4","article-title":"The dementias platform UK (DPUK) data portal","volume":"35","author":"Bauermeister","year":"2020","journal-title":"Eur. J. Epidemiol."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0005","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1161\/STROKEAHA.109.570044","article-title":"Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the framingham offspring study","volume":"41","author":"Debette","year":"2010","journal-title":"Stroke"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0006","series-title":"Simulation and Synthesis in Medical Imaging, Lecture Notes in Computer Science","first-page":"20","article-title":"Deep harmonization of inconsistent MR data for consistent volume segmentation","author":"Dewey","year":"2018"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0007","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.neuroimage.2017.10.026","article-title":"Longitudinally and inter-site consistent multi-atlas based parcellation of brain anatomy using harmonized atlases","volume":"166","author":"Erus","year":"2018","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0008","doi-asserted-by":"crossref","DOI":"10.1186\/1471-244X-14-159","article-title":"Study protocol: the Whitehall II imaging sub-study","volume":"14","author":"Filippini","year":"2014","journal-title":"BMC Psychiatry"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0009","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.neuroimage.2017.11.024","article-title":"Harmonization of cortical thickness measurements across scanners and sites","volume":"167","author":"Fortin","year":"2018","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0010","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.neuroimage.2017.08.047","article-title":"Harmonization of multi-site diffusion tensor imaging data","volume":"161","author":"Fortin","year":"2017","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0011","series-title":"Machine Learning with Multi-Site Imaging Data: An Empirical Study on the Impact of Scanner Effects","author":"Glocker","year":"2019"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0012","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.neuroimage.2017.03.024","article-title":"Classification and characterization of periventricular and deep white matter hyperintensities on MRI: a study in older adults","volume":"170","author":"Griffanti","year":"2018","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0013","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.neuroimage.2016.07.018","article-title":"BIANCA (brain intensity abnormality classification algorithm): a new tool for automated segmentation of white matter hyperintensities","volume":"141","author":"Griffanti","year":"2016","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0014","doi-asserted-by":"crossref","first-page":"679","DOI":"10.3389\/fnins.2019.00679","article-title":"Intra-scanner and inter-scanner reproducibility of automatic white matter hyperintensities quantification","volume":"13","author":"Guo","year":"2019","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0015","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1093\/brain\/awm336","article-title":"11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment","volume":"131","author":"Jack","year":"2008","journal-title":"Brain"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0016","doi-asserted-by":"crossref","first-page":"782","DOI":"10.1016\/j.neuroimage.2011.09.015","article-title":"FSL","volume":"62","author":"Jenkinson","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0017","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/S1361-8415(01)00036-6","article-title":"A global optimisation method for robust affine registration of brain images","volume":"5","author":"Jenkinson","year":"2001","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0018","doi-asserted-by":"crossref","first-page":"2123","DOI":"10.1016\/j.neuroimage.2009.11.006","article-title":"Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort","volume":"49","author":"Kruggel","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0019","unstructured":"McCarthy, P., 2019. Funpack (Version 1.5.0), https:\/\/git.fmrib.ox.ac.uk\/fsl\/funpack\/. Zenodo. 10.5281\/ZENODO.3568090"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0020","doi-asserted-by":"crossref","first-page":"1523","DOI":"10.1038\/nn.4393","article-title":"Multimodal population brain imaging in the UK Biobank prospective epidemiological study","volume":"19","author":"Miller","year":"2016","journal-title":"Nat. Neurosci."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0021","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.neuroimage.2016.04.041","article-title":"Inter-site and inter-scanner diffusion MRI data harmonization","volume":"135","author":"Mirzaalian","year":"2016","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0022","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1007\/s11682-016-9670-y","article-title":"Multi-site harmonization of diffusion MRI data in a registration framework","volume":"12","author":"Mirzaalian","year":"2018","journal-title":"Brain Imaging Behav."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0023","series-title":"Computational Diffusion MRI, Mathematics and Visualization","first-page":"217","article-title":"Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results","author":"Ning","year":"2019"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0024","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2020.117128","article-title":"Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results","volume":"221","author":"Ning","year":"2020","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0025","first-page":"2825","article-title":"Scikit-learn: machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0026","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2019.116450","article-title":"Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan","volume":"208","author":"Pomponio","year":"2020","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0027","doi-asserted-by":"crossref","DOI":"10.3389\/fneur.2019.00726","article-title":"Measurement variability following MRI system upgrade","volume":"10","author":"Potvin","year":"2019","journal-title":"Front. Neurol."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0028","doi-asserted-by":"crossref","first-page":"1501","DOI":"10.3174\/ajnr.A5254","article-title":"Volumetric analysis from a harmonized multisite brain MRI study of a single subject with multiple sclerosis","volume":"38","author":"Shinohara","year":"2017","journal-title":"Am. J. Neuroradiol."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0029","first-page":"191","article-title":"Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration","volume":"11","author":"Smith","year":"2019","journal-title":"Alzheimers Dement. Diagn. Assess. Dis. Monit."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0030","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1002\/hbm.10062","article-title":"Fast robust automated brain extraction","volume":"17","author":"Smith","year":"2002","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0031","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/j.neuron.2017.12.018","article-title":"Statistical challenges in \u201cbig data\u201d human neuroimaging","volume":"97","author":"Smith","year":"2018","journal-title":"Neuron"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0032","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1016\/j.nicl.2013.10.003","article-title":"Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs)","volume":"3","author":"Steenwijk","year":"2013","journal-title":"NeuroImage Clin."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0033","doi-asserted-by":"crossref","first-page":"4478","DOI":"10.1002\/hbm.25117","article-title":"Harmonization of diffusion MRI datasets with adaptive dictionary learning","volume":"41","author":"St-Jean","year":"2020","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0034","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.neuroimage.2019.01.077","article-title":"Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms","volume":"195","author":"Tax","year":"2019","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0035","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"484","article-title":"Quantifying Confounding Bias in Neuroimaging Datasets with Causal Inference","author":"Wachinger","year":"2019"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0036","doi-asserted-by":"crossref","first-page":"822","DOI":"10.1016\/S1474-4422(13)70124-8","article-title":"Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration","volume":"12","author":"Wardlaw","year":"2013","journal-title":"Lancet Neurol."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0037","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1086\/367939","article-title":"Allometric analysis beyond heterogeneous regression slopes: use of the Johnson\u2013Neyman technique in comparative biology","volume":"76","author":"White","year":"2003","journal-title":"Physiol. Biochem. Zool."},{"key":"10.1016\/j.neuroimage.2021.118189_bib0038","doi-asserted-by":"crossref","first-page":"e272","DOI":"10.1212\/WNL.0000000000007772","article-title":"Age-dependent association of white matter abnormality with cognition after TIA or minor stroke","volume":"93","author":"Zamboni","year":"2019","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0039","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.neuroimage.2018.06.077","article-title":"The EADC-ADNI harmonized protocol for hippocampal segmentation: a validation study","volume":"181","author":"Zandifar","year":"2018","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0040","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/42.906424","article-title":"Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm","volume":"20","author":"Zhang","year":"2001","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2021.118189_bib0041","doi-asserted-by":"crossref","DOI":"10.1093\/braincomms\/fcaa026","article-title":"Association of midlife stroke risk with structural brain integrity and memory performance at older ages: a longitudinal cohort study","volume":"2","author":"Zsoldos","year":"2020","journal-title":"Brain Commun."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811921004663?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811921004663?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,11,23]],"date-time":"2021-11-23T04:02:55Z","timestamp":1637640175000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811921004663"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8]]},"references-count":41,"alternative-id":["S1053811921004663"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2021.118189","relation":{"has-preprint":[{"id-type":"doi","id":"10.1101\/2020.07.28.208579","asserted-by":"object"}]},"ISSN":["1053-8119"],"issn-type":[{"value":"1053-8119","type":"print"}],"subject":[],"published":{"date-parts":[[2021,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Integrating large-scale neuroimaging research datasets: Harmonisation of white matter hyperintensity measurements across Whitehall and UK Biobank datasets","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2021.118189","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"118189"}}