{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,3]],"date-time":"2025-04-03T17:06:30Z","timestamp":1743699990519,"version":"3.37.3"},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,12,28]],"date-time":"2020-12-28T00:00:00Z","timestamp":1609113600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001665","name":"Agence Nationale de la Recherche","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010661","name":"Horizon 2020 Framework Programme","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100010661","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2021,4]]},"DOI":"10.1016\/j.neuroimage.2020.117706","type":"journal-article","created":{"date-parts":[[2021,1,20]],"date-time":"2021-01-20T16:46:17Z","timestamp":1611161177000},"page":"117706","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":25,"special_numbering":"C","title":["Brain topography beyond parcellations: Local gradients of functional maps"],"prefix":"10.1016","volume":"229","author":[{"given":"Elvis","family":"Dohmatob","sequence":"first","affiliation":[]},{"given":"Hugo","family":"Richard","sequence":"additional","affiliation":[]},{"given":"Ana Lu\u00edsa","family":"Pinho","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5018-7895","authenticated-orcid":false,"given":"Bertrand","family":"Thirion","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2020.117706_bib0001","series-title":"MICCAI - 16th International Conference on Medical Image Computing and Computer Assisted Intervention - 2013","article-title":"Extracting brain regions from rest fMRI with Total-Variation constrained dictionary learning","author":"Abraham","year":"2013"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0002","first-page":"15","article-title":"Machine learning for neuroimaging with Scikit-learn","author":"Abraham","year":"2013","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0003","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1016\/j.neuroimage.2014.06.010","article-title":"Interoperable atlases of the human brain","volume":"99","author":"Amunts","year":"2014","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0004","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.neuroimage.2013.05.033","article-title":"Function in the human connectome: task-FMRI and individual differences in behavior","volume":"80","author":"Barch","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0005","doi-asserted-by":"crossref","first-page":"e32992","DOI":"10.7554\/eLife.32992","article-title":"The relationship between spatial configuration and functional connectivity of brain regions","volume":"7","author":"Bijsterbosch","year":"2018","journal-title":"eLife"},{"issue":"4","key":"10.1016\/j.neuroimage.2020.117706_bib0006","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1002\/mrm.1910340409","article-title":"Functional connectivity in the motor cortex of resting human brain using echo-planar MRI","volume":"34","author":"Biswal","year":"1995","journal-title":"Magn. Reson. Med."},{"issue":"4","key":"10.1016\/j.neuroimage.2020.117706_bib0007","doi-asserted-by":"crossref","first-page":"1513","DOI":"10.1152\/jn.00808.2018","article-title":"Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions","volume":"121","author":"Braga","year":"2019","journal-title":"J. Neurophysiol."},{"issue":"2","key":"10.1016\/j.neuroimage.2020.117706_bib0008","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0009","series-title":"Advances in Neural Information Processing Systems 28","first-page":"3348","article-title":"Semi-supervised factored logistic regression for high-dimensional neuroimaging data","author":"Bzdok","year":"2015"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0010","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pcbi.1004994","article-title":"Formal models of the network co-occurrence underlying mental operations","volume":"12","author":"Bzdok","year":"2016","journal-title":"PLoS Comput. Biol."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0011","series-title":"Advances in Neural Information Processing Systems 28","first-page":"460","article-title":"A reduced-dimension FMRI shared response model","author":"Chen","year":"2015"},{"issue":"1","key":"10.1016\/j.neuroimage.2020.117706_sbref0012","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.neuroimage.2008.01.066","article-title":"Defining functional areas in individual human brains using resting functional connectivity mri","volume":"41","author":"Cohen","year":"2008","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2020.117706_sbref0013","article-title":"Randomized parcellation based inference","author":"Da Mota","year":"2013","journal-title":"NeuroImage"},{"issue":"192","key":"10.1016\/j.neuroimage.2020.117706_bib0014","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.neuroimage.2019.02.062","article-title":"Benchmarking functional connectome-based predictive models for resting-state fMRI","author":"Dadi","year":"2019","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2020.117706_sbref0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2020.117126","article-title":"Fine-grain atlases of functional modes for fMRI analysis","author":"Dadi","year":"2020","journal-title":"NeuroImage"},{"issue":"26","key":"10.1016\/j.neuroimage.2020.117706_bib0016","doi-asserted-by":"crossref","first-page":"10415","DOI":"10.1073\/pnas.0903525106","article-title":"Independent component analysis for brain FMRI does not select for independence","volume":"106","author":"Daubechies","year":"2009","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"3","key":"10.1016\/j.neuroimage.2020.117706_bib0017","doi-asserted-by":"crossref","first-page":"1144","DOI":"10.1152\/jn.00529.2019","article-title":"Parallel distributed networks dissociate episodic and social functions within the individual","volume":"123","author":"DiNicola","year":"2020","journal-title":"J. Neurophysiol."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0018","series-title":"Neural Information Processing Systems (NIPS)","article-title":"Learning brain regions via large-scale online structured sparse dictionary-learning","author":"Dohmatob","year":"2016"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0019","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.neuroimage.2017.02.018","article-title":"Topographic organization of the cerebral cortex and brain cartography","volume":"170","author":"Eickhoff","year":"2018","journal-title":"Neuroimage"},{"issue":"11","key":"10.1016\/j.neuroimage.2020.117706_bib0020","doi-asserted-by":"crossref","first-page":"672","DOI":"10.1038\/s41583-018-0071-7","article-title":"Imaging-based parcellations of the human brain","volume":"19","author":"Eickhoff","year":"2018","journal-title":"Nat. Rev. Neurosci."},{"issue":"0","key":"10.1016\/j.neuroimage.2020.117706_sbref0021","article-title":"What is the test-retest reliability of common task-functional mri measures? new empirical evidence and a meta-analysis","volume":"0","author":"Elliott","year":"2020","journal-title":"Psychological Science"},{"issue":"11","key":"10.1016\/j.neuroimage.2020.117706_bib0022","doi-asserted-by":"crossref","first-page":"1664","DOI":"10.1038\/nn.4135","article-title":"Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity","volume":"18","author":"Finn","year":"2015","journal-title":"Nat. Neurosci."},{"issue":"4","key":"10.1016\/j.neuroimage.2020.117706_bib0023","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1002\/hbm.460020402","article-title":"Statistical parametric maps in functional imaging: a general linear approach","volume":"2","author":"Friston","year":"1994","journal-title":"Hum. Brain Mapp."},{"issue":"4","key":"10.1016\/j.neuroimage.2020.117706_bib0024","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/j.tics.2018.01.010","article-title":"How to characterize the function of a brain region","volume":"22","author":"Genon","year":"2018","journal-title":"Trends Cognit. Sci."},{"issue":"7615","key":"10.1016\/j.neuroimage.2020.117706_bib0025","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1038\/nature18933","article-title":"A multi-modal parcellation of human cerebral cortex","volume":"536","author":"Glasser","year":"2016","journal-title":"Nature"},{"issue":"32","key":"10.1016\/j.neuroimage.2020.117706_bib0026","doi-asserted-by":"crossref","first-page":"11597","DOI":"10.1523\/JNEUROSCI.2180-11.2011","article-title":"Mapping human cortical areas in vivo based on myelin content as revealed by t1- and t2-weighted mri","volume":"31","author":"Glasser","year":"2011","journal-title":"Journal of Neuroscience"},{"issue":"4","key":"10.1016\/j.neuroimage.2020.117706_bib0027","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1016\/j.neuron.2017.07.011","article-title":"Precision functional mapping of individual human brains","volume":"95","author":"Gordon","year":"2017","journal-title":"Neuron"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0028","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1016\/j.neuron.2011.08.026","article-title":"A common, high-dimensional model of the representational space in human ventral temporal cortex","volume":"72","author":"Haxby","year":"2011","journal-title":"Neuron"},{"issue":"2","key":"10.1016\/j.neuroimage.2020.117706_bib0029","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1016\/j.neuron.2011.08.026","article-title":"A common, high-dimensional model of the representational space in human ventral temporal cortex","volume":"72","author":"Haxby","year":"2011","journal-title":"Neuron"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0030","doi-asserted-by":"crossref","first-page":"116276","DOI":"10.1016\/j.neuroimage.2019.116276","article-title":"Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics","volume":"206","author":"He","year":"2020","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2020.117706_sbref0031","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.neuroimage.2017.10.005","article-title":"Frem scalable and stable decoding with fast regularized ensemble of models","volume":"180","author":"Hoyos-Idrobo","year":"2018","journal-title":"NeuroImage"},{"issue":"1","key":"10.1016\/j.neuroimage.2020.117706_bib0032","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.tics.2017.11.002","article-title":"Large-scale gradients in human cortical organization","volume":"22","author":"Huntenburg","year":"2018","journal-title":"Trends Cognit. Sci."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0033","doi-asserted-by":"crossref","DOI":"10.1016\/j.conb.2012.12.004","article-title":"The topographic connectome","volume":"23","author":"Jbabdi","year":"2013","journal-title":"Curr. Opin. Neurobiol."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0034","article-title":"Online learning for matrix factorization and sparse coding","volume":"11","author":"Mairal","year":"2010","journal-title":"J. Mach. Learn. Res."},{"issue":"44","key":"10.1016\/j.neuroimage.2020.117706_bib0035","doi-asserted-by":"crossref","first-page":"12574","DOI":"10.1073\/pnas.1608282113","article-title":"Situating the default-mode network along a principal gradient of macroscale cortical organization","volume":"113","author":"Margulies","year":"2016","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0036","series-title":"Advances in Neural Information Processing Systems 30","first-page":"5883","article-title":"Learning neural representations of human cognition across many FMRI studies","author":"Mensch","year":"2017"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0037","series-title":"ICML","article-title":"Dictionary learning for massive matrix factorization","author":"Mensch","year":"2016"},{"issue":"7","key":"10.1016\/j.neuroimage.2020.117706_bib0038","doi-asserted-by":"crossref","first-page":"e67444","DOI":"10.1371\/journal.pone.0067444","article-title":"Resting state networks\u2019 corticotopy: the dual intertwined rings architecture","volume":"8","author":"Mesmoudi","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0039","doi-asserted-by":"crossref","first-page":"115","DOI":"10.3389\/fnins.2017.00115","article-title":"Using dual regression to investigate network shape and amplitude in functional connectivity analyses","volume":"11","author":"Nickerson","year":"2017","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0040","article-title":"Scikit-learn: machine learning in Python","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"issue":"4","key":"10.1016\/j.neuroimage.2020.117706_bib0041","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1093\/brain\/60.4.389","article-title":"Somatic motor and sensory rrepresentation in the cerebral cortex of man as studied by electrival stimulation","volume":"60","author":"Penfield","year":"1937","journal-title":"Brain"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0042","doi-asserted-by":"crossref","first-page":"180105","DOI":"10.1038\/sdata.2018.105","article-title":"Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping.","volume":"5","author":"Pinho","year":"2018","journal-title":"Sci. Data"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0043","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1038\/nn.3001","article-title":"Anatomical connectivity patterns predict face selectivity in the fusiform gyrus","volume":"15","author":"Saygin","year":"2011","journal-title":"Nat. Neurosci."},{"issue":"9","key":"10.1016\/j.neuroimage.2020.117706_bib0044","doi-asserted-by":"crossref","first-page":"3095","DOI":"10.1093\/cercor\/bhx179","article-title":"Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI","volume":"28","author":"Schaefer","year":"2017","journal-title":"Cereb. Cortex"},{"issue":"1","key":"10.1016\/j.neuroimage.2020.117706_bib0045","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1038\/nn.2706","article-title":"The surface area of human V1 predicts the subjective experience of object size","volume":"14","author":"Schwarzkopf","year":"2011","journal-title":"Nat. Neurosci."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0046","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1186\/s12883-014-0204-1","article-title":"The cambridge centre for ageing and neuroscience (cam-can) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing","volume":"14","author":"Shafto","year":"2014","journal-title":"BMC Neurol."},{"issue":"31","key":"10.1016\/j.neuroimage.2020.117706_bib0047","doi-asserted-by":"crossref","first-page":"13040","DOI":"10.1073\/pnas.0905267106","article-title":"Correspondence of the brain\u2019s functional architecture during activation and rest","volume":"106","author":"Smith","year":"2009","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0048","doi-asserted-by":"crossref","first-page":"738","DOI":"10.1016\/j.neuroimage.2014.07.051","article-title":"Group-PCA for very large FMRI datasets","author":"Smith","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0049","doi-asserted-by":"crossref","DOI":"10.1126\/science.aad8127","article-title":"Task-free MRI predicts individual differences in brain activity during task performance","volume":"352","author":"Tavor","year":"2016","journal-title":"Science"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0050","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1002\/hbm.20210","article-title":"Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets","volume":"27","author":"Thirion","year":"2006","journal-title":"Hum. Brain Mapp."},{"issue":"167","key":"10.1016\/j.neuroimage.2020.117706_bib0051","first-page":"13","article-title":"Which fMRI clustering gives good brain parcellations?","volume":"8","author":"Thirion","year":"2014","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0052","series-title":"MICCAI","article-title":"Principal Component Regression predicts functional responses across individuals","author":"Thirion","year":"2014"},{"issue":"3","key":"10.1016\/j.neuroimage.2020.117706_bib0053","doi-asserted-by":"crossref","first-page":"1468","DOI":"10.1016\/j.neuroimage.2003.07.008","article-title":"Geometric atlas: modeling the cortex as an organized surface","volume":"20","author":"Toro","year":"2003","journal-title":"Neuroimage"},{"issue":"4","key":"10.1016\/j.neuroimage.2020.117706_bib0054","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2012.02.018","article-title":"The human connectome project: A data acquisition perspective","volume":"62","author":"van Essen","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2020.117706_sbref0055","series-title":"Information Processing in Medical Imaging","first-page":"562","article-title":"Multi-subject dictionary learning to segment an atlas of brain spontaneous activity","author":"Varoquaux","year":"2011"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0056","doi-asserted-by":"crossref","DOI":"10.1016\/j.conb.2018.11.002","article-title":"Predictive models avoid excessive reductionism in cognitive neuroimaging","volume":"55","author":"Varoquaux","year":"2019","journal-title":"Curr. Opin. Neurobiol."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0057","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2010.02.010","article-title":"A group model for stable multi-subject ICA on FMRIdatasets","volume":"51","author":"Varoquaux","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0058","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1186\/2047-217X-3-28","article-title":"How machine learning is shaping cognitive neuroimaging","volume":"3","author":"Varoquaux","year":"2014","journal-title":"GigaScience"},{"year":"1993","series-title":"Resampling-based multiple testing: examples and methods for P-value adjustment","author":"Westfall","key":"10.1016\/j.neuroimage.2020.117706_bib0059"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0060","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.neubiorev.2016.08.035","article-title":"Large-scale functional network overlap is a general property of brain functional organization: reconciling inconsistent FMRIfindings from general-linear-model-based analyses","volume":"71","author":"Xu","year":"2016","journal-title":"Neurosci. Biobehav. Rev."},{"key":"10.1016\/j.neuroimage.2020.117706_bib0061","doi-asserted-by":"crossref","unstructured":"Xu, T., Nenning, K.-H., Schwartz, E., Hong, S.-J., Vogelstein, J. T., Fair, D. A., Schroeder, C. E., Margulies, D. S., Smallwood, J., Milham, M. P., Langs, G., 2019. Cross-species functional alignment reveals evolutionary hierarchy within the connectome. bioRxiv. 10.1101\/692616","DOI":"10.1101\/692616"},{"issue":"11","key":"10.1016\/j.neuroimage.2020.117706_bib0062","doi-asserted-by":"crossref","first-page":"4192","DOI":"10.1093\/cercor\/bhw241","article-title":"Assessing variations in areal organization for the intrinsic brain: from fingerprints to reliability","volume":"26","author":"Xu","year":"2016","journal-title":"Cereb. Cortex"},{"key":"10.1016\/j.neuroimage.2020.117706_bib0063","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.1152\/jn.00338.2011","article-title":"The organization of the human cerebral cortex estimated by intrinsic functional connectivity","volume":"106","author":"Yeo","year":"2011","journal-title":"J. Neurophysiol."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811920311915?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811920311915?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,2,27]],"date-time":"2022-02-27T07:11:12Z","timestamp":1645945872000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811920311915"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4]]},"references-count":63,"alternative-id":["S1053811920311915"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2020.117706","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2021,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Brain topography beyond parcellations: Local gradients of functional maps","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2020.117706","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"117706"}}