{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:55:36Z","timestamp":1740106536355,"version":"3.37.3"},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,3,1]],"date-time":"2020-03-01T00:00:00Z","timestamp":1583020800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,12,6]],"date-time":"2019-12-06T00:00:00Z","timestamp":1575590400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000049","name":"National Institute on Aging","doi-asserted-by":"publisher","award":["1RF1AG054409"],"id":[{"id":"10.13039\/100000049","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000025","name":"National Institute of Mental Health","doi-asserted-by":"publisher","award":["5R01MH112070","R01MH120482","R01MH112847"],"id":[{"id":"10.13039\/100000025","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["75N95019C00022"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Allen H. and Selma W. Berkman Charitable Trust"},{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["R01HL127659-04S1"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000025","name":"National Institute of Mental Health","doi-asserted-by":"publisher","award":["R01MH120482","R01MH112847"],"id":[{"id":"10.13039\/100000025","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000025","name":"National Institute of Mental Health","doi-asserted-by":"publisher","award":["R01MH113565"],"id":[{"id":"10.13039\/100000025","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000049","name":"National Institute on Aging","doi-asserted-by":"publisher","award":["AG010124","R01AG055005"],"id":[{"id":"10.13039\/100000049","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000890","name":"National Multiple Sclerosis Society","doi-asserted-by":"publisher","award":["RG170728586"],"id":[{"id":"10.13039\/100000890","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000065","name":"National Institute of Neurological Disorders and Stroke","doi-asserted-by":"publisher","award":["R01NS060910"],"id":[{"id":"10.13039\/100000065","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000050","name":"National Heart, Lung, and Blood Institute","doi-asserted-by":"publisher","award":["HHSN268201800003I","HHSN268201800004I","HHSN268201800005I","HHSN268201800006I","HHSN268201800007I"],"id":[{"id":"10.13039\/100000050","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000049","name":"National Institute on Aging","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000049","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000049","name":"NIA","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000049","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000050","name":"NHLBI","doi-asserted-by":"publisher","award":["AG0005"],"id":[{"id":"10.13039\/100000050","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000049","name":"National Institute on Aging, NIH","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000049","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100008716","name":"Science and Industry Endowment Fund","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100008716","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100002986","name":"Dementia Collaborative Research Centres","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002986","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004161","name":"McCusker Alzheimer\u2019s Research Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004161","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000925","name":"National Health and Medical Research Council","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100000925","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Yulgilbar Foundation"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2020,3]]},"DOI":"10.1016\/j.neuroimage.2019.116450","type":"journal-article","created":{"date-parts":[[2019,12,9]],"date-time":"2019-12-09T05:43:23Z","timestamp":1575870203000},"page":"116450","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":314,"special_numbering":"C","title":["Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan"],"prefix":"10.1016","volume":"208","author":[{"given":"Raymond","family":"Pomponio","sequence":"first","affiliation":[]},{"given":"Guray","family":"Erus","sequence":"additional","affiliation":[]},{"given":"Mohamad","family":"Habes","sequence":"additional","affiliation":[]},{"given":"Jimit","family":"Doshi","sequence":"additional","affiliation":[]},{"given":"Dhivya","family":"Srinivasan","sequence":"additional","affiliation":[]},{"given":"Elizabeth","family":"Mamourian","sequence":"additional","affiliation":[]},{"given":"Vishnu","family":"Bashyam","sequence":"additional","affiliation":[]},{"given":"Ilya M.","family":"Nasrallah","sequence":"additional","affiliation":[]},{"given":"Theodore D.","family":"Satterthwaite","sequence":"additional","affiliation":[]},{"given":"Yong","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Lenore J.","family":"Launer","sequence":"additional","affiliation":[]},{"given":"Colin L.","family":"Masters","sequence":"additional","affiliation":[]},{"given":"Paul","family":"Maruff","sequence":"additional","affiliation":[]},{"given":"Chuanjun","family":"Zhuo","sequence":"additional","affiliation":[]},{"given":"Henry","family":"V\u00f6lzke","sequence":"additional","affiliation":[]},{"given":"Sterling C.","family":"Johnson","sequence":"additional","affiliation":[]},{"given":"Jurgen","family":"Fripp","sequence":"additional","affiliation":[]},{"given":"Nikolaos","family":"Koutsouleris","sequence":"additional","affiliation":[]},{"given":"Daniel H.","family":"Wolf","sequence":"additional","affiliation":[]},{"given":"Raquel","family":"Gur","sequence":"additional","affiliation":[]},{"given":"Ruben","family":"Gur","sequence":"additional","affiliation":[]},{"given":"John","family":"Morris","sequence":"additional","affiliation":[]},{"given":"Marilyn S.","family":"Albert","sequence":"additional","affiliation":[]},{"given":"Hans J.","family":"Grabe","sequence":"additional","affiliation":[]},{"given":"Susan M.","family":"Resnick","sequence":"additional","affiliation":[]},{"given":"R. Nick","family":"Bryan","sequence":"additional","affiliation":[]},{"given":"David A.","family":"Wolk","sequence":"additional","affiliation":[]},{"given":"Russell T.","family":"Shinohara","sequence":"additional","affiliation":[]},{"given":"Haochang","family":"Shou","sequence":"additional","affiliation":[]},{"given":"Christos","family":"Davatzikos","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2019.116450_bib1","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.neuroimage.2017.10.034","article-title":"Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank","volume":"166","author":"Alfaro-Almagro","year":"2019","journal-title":"Neuroimage"},{"issue":"9","key":"10.1016\/j.neuroimage.2019.116450_bib2","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.1016\/j.neurobiolaging.2005.05.023","article-title":"Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region","volume":"26","author":"Allen","year":"2005","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.neuroimage.2019.116450_bib3","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.neurobiolaging.2018.10.024","article-title":"Predictors of neurodegeneration differ between cognitively normal and subsequently impaired older adults","volume":"75","author":"Armstrong","year":"2019","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.neuroimage.2019.116450_bib4","series-title":"MICCAI Challenge Workshop on Segmentation: Algorithms, Theory and Applications (SATA)","article-title":"Miccai 2013 segmentation algorithms, theory and applications (SATA) challenge results summary","author":"Asman","year":"2013"},{"issue":"10","key":"10.1016\/j.neuroimage.2019.116450_bib5","doi-asserted-by":"crossref","first-page":"1709","DOI":"10.1016\/j.mri.2013.07.017","article-title":"The effects of changing water content, relaxation times, and tissue contrast on tissue segmentation and measures of cortical anatomy in MR images","volume":"31","author":"Bansal","year":"2013","journal-title":"Magn. Reson. Imag."},{"author":"Chang","key":"10.1016\/j.neuroimage.2019.116450_bib6"},{"issue":"2","key":"10.1016\/j.neuroimage.2019.116450_bib7","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1001\/archneur.55.2.169","article-title":"Sex Differences in Brain Aging: a quantitative magnetic resonance imaging study","volume":"55","author":"Coffey","year":"1998","journal-title":"Arch. Neurol."},{"issue":"12","key":"10.1016\/j.neuroimage.2019.116450_bib8","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1016\/j.tins.2017.10.001","article-title":"Predicting age using neuroimaging: innovative brain ageing biomarkers","volume":"40","author":"Cole","year":"2017","journal-title":"Trends Neurosci."},{"issue":"3","key":"10.1016\/j.neuroimage.2019.116450_bib9","doi-asserted-by":"crossref","DOI":"10.1148\/radiology.216.3.r00au37672","article-title":"Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers","volume":"213","author":"Courchesne","year":"2000","journal-title":"Radiology"},{"issue":"3","key":"10.1016\/j.neuroimage.2019.116450_bib10","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1093\/cercor\/bhn113","article-title":"The cortical signature of Alzheimer\u2019s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD Dementia and is detectable in asymptomatic amyloid-positive individuals","volume":"19","author":"Dickerson","year":"2009","journal-title":"Cerebr. Cortex"},{"issue":"5997","key":"10.1016\/j.neuroimage.2019.116450_bib11","doi-asserted-by":"crossref","first-page":"1358","DOI":"10.1126\/science.1194144","article-title":"Prediction of individual brain maturity using fMRI","volume":"329","author":"Dosenbach","year":"2010","journal-title":"Science"},{"issue":"12","key":"10.1016\/j.neuroimage.2019.116450_bib12","doi-asserted-by":"crossref","first-page":"1566","DOI":"10.1016\/j.acra.2013.09.010","article-title":"Multi-atlas skull-stripping","volume":"20","author":"Doshi","year":"2013","journal-title":"Acad. Radiol."},{"key":"10.1016\/j.neuroimage.2019.116450_bib13","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.neuroimage.2015.11.073","article-title":"MUSE: multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally-optimal atlas selection","volume":"127","author":"Doshi","year":"2016","journal-title":"Neuroimage"},{"issue":"22","key":"10.1016\/j.neuroimage.2019.116450_bib14","doi-asserted-by":"crossref","first-page":"1906","DOI":"10.1212\/WNL.0b013e3181a82634","article-title":"Longitudional pattern of regional brain volume change differentiates normal aging from MCI","volume":"72","author":"Driscoll","year":"2009","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2019.116450_bib15","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.neurobiolaging.2018.06.013","article-title":"Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods","volume":"71","author":"Eavani","year":"2018","journal-title":"Neurobiol. Aging"},{"issue":"6","key":"10.1016\/j.neuroimage.2019.116450_bib16","doi-asserted-by":"crossref","first-page":"1676","DOI":"10.1093\/cercor\/bht425","article-title":"Imaging patterns of brain development and their relationship to cognition","volume":"25","author":"Erus","year":"2015","journal-title":"Cerebr. Cortex"},{"issue":"3","key":"10.1016\/j.neuroimage.2019.116450_bib17","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1515\/REVNEURO.2010.21.3.187","article-title":"Structural brain changes in aging: courses, causes and cognitive consequences","volume":"21","author":"Fjell","year":"2010","journal-title":"Rev. Neurosci."},{"issue":"4","key":"10.1016\/j.neuroimage.2019.116450_bib18","doi-asserted-by":"crossref","first-page":"1376","DOI":"10.1016\/j.neuroimage.2010.01.061","article-title":"When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies","volume":"50","author":"Fjell","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116450_bib19","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.neuroimage.2017.08.047","article-title":"Harmonization of multi-site diffusion tensor imaging data","volume":"161","author":"Fortin","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116450_bib20","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.neuroimage.2017.11.024","article-title":"Harmonization of cortical thickness measurements across scanners and sites","volume":"167","author":"Fortin","year":"2018","journal-title":"Neuroimage"},{"issue":"3","key":"10.1016\/j.neuroimage.2019.116450_bib21","doi-asserted-by":"crossref","first-page":"883","DOI":"10.1016\/j.neuroimage.2010.01.005","article-title":"The Alzheimer\u2019s Disease Neuroimaging Initiative, 2010. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters","volume":"50","author":"Franke","year":"2010","journal-title":"Neuroimage"},{"issue":"11","key":"10.1016\/j.neuroimage.2019.116450_bib22","doi-asserted-by":"crossref","first-page":"1105","DOI":"10.1016\/0895-4356(88)90080-7","article-title":"CARDIA: study design, recruitment, and some characteristics of the examined subjects","volume":"41","author":"Friedman","year":"1988","journal-title":"J.\u00a0Clin. Epidemiol."},{"key":"10.1016\/j.neuroimage.2019.116450_bib23","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1038\/13158","article-title":"Brain development during childhood and adolescence: a longitudinal MRI study","volume":"2","author":"Giedd","year":"1999","journal-title":"Nat. Neurosci."},{"key":"10.1016\/j.neuroimage.2019.116450_bib24","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1038\/tp.2016.39","article-title":"Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns","volume":"6","author":"Habes","year":"2016","journal-title":"Transl. Psychiatry"},{"issue":"3","key":"10.1016\/j.neuroimage.2019.116450_bib25","first-page":"297","article-title":"Generalized additive models","volume":"1","author":"Hastie","year":"1986","journal-title":"Stat. Sci."},{"issue":"12","key":"10.1016\/j.neuroimage.2019.116450_bib26","doi-asserted-by":"crossref","first-page":"2023","DOI":"10.1007\/s11064-007-9341-x","article-title":"What\u2019s behind the decline? The role of white matter in brain aging","volume":"32","author":"Hinman","year":"2007","journal-title":"Neurochem. Res."},{"issue":"4","key":"10.1016\/j.neuroimage.2019.116450_bib27","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1002\/jmri.21049","article-title":"The Alzheimer\u2019s disease neuroimaging initiative (ADNI): MRI methods","volume":"27","author":"Jack","year":"2008","journal-title":"J.\u00a0Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116450_bib28","doi-asserted-by":"crossref","DOI":"10.1038\/tp.2014.102","article-title":"Genetic, psychosocial and clinical factors associated with hippocampal volume in the general population","volume":"4","author":"Janowitz","year":"2014","journal-title":"Transl. Psychiatry"},{"key":"10.1016\/j.neuroimage.2019.116450_bib29","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1016\/j.neuroimage.2015.04.057","article-title":"The pediatric imaging, neruocognition, and genetics (PING) data repository","volume":"124","author":"Jernigan","year":"2016","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116450_bib30","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1093\/biostatistics\/kxj037","article-title":"Adjusting batch effects in mircoarray expression data using empirical Bayes methods","volume":"8","author":"Johnson","year":"2007","journal-title":"Biostatistics"},{"key":"10.1016\/j.neuroimage.2019.116450_bib31","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.neuroimage.2018.08.073","article-title":"Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters","volume":"184","author":"Karayumak","year":"2019","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116450_bib32","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1038\/s41467-017-00908-7","article-title":"Sample composition alters associations between age and brain structure","volume":"8","author":"LeWinn","year":"2017","journal-title":"Nat. Commun."},{"issue":"3","key":"10.1016\/j.neuroimage.2019.116450_bib33","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1016\/j.biopsych.2017.09.006","article-title":"Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress dissorder consortia","volume":"83","author":"Logue","year":"2018","journal-title":"Biol. Psychiatry"},{"key":"10.1016\/j.neuroimage.2019.116450_bib34","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/j.neuroimage.2016.07.044","article-title":"Structural brain development between childhood and adulthood: convergence across four longitudinal samples","volume":"141","author":"Mills","year":"2016","journal-title":"Neuroimage"},{"issue":"9","key":"10.1016\/j.neuroimage.2019.116450_bib35","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1001\/archneur.1994.00540210046012","article-title":"A\u00a0quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood","volume":"51","author":"Pfefferbaum","year":"1994","journal-title":"Arch. Neurol."},{"issue":"8","key":"10.1016\/j.neuroimage.2019.116450_bib36","doi-asserted-by":"crossref","first-page":"3295","DOI":"10.1523\/JNEUROSCI.23-08-03295.2003","article-title":"Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain","volume":"23","author":"Resnick","year":"2003","journal-title":"J.\u00a0Neurosci."},{"issue":"5","key":"10.1016\/j.neuroimage.2019.116450_bib37","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1001\/jamaneurol.2013.1342","article-title":"Risk factors for \u03b2-amyloid deposition in healthy aging: vascular and genetic effects","volume":"70","author":"Rodrigue","year":"2013","journal-title":"JAMA Neurol."},{"issue":"23","key":"10.1016\/j.neuroimage.2019.116450_bib38","doi-asserted-by":"crossref","first-page":"8643","DOI":"10.1073\/pnas.1400178111","article-title":"Impact of puberty on the evolution of cerebral perfusion during adolescence","volume":"111","author":"Satterthwaite","year":"2014","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"issue":"Part B","key":"10.1016\/j.neuroimage.2019.116450_bib39","first-page":"116","article-title":"The Philadelphia Neurodevelopmental Cohort: a publicly available resource for the study of normal and abnormal brain development in youth","volume":"124","author":"Satterthwaite","year":"2016","journal-title":"NeuroImahe"},{"key":"10.1016\/j.neuroimage.2019.116450_bib40","doi-asserted-by":"crossref","first-page":"806","DOI":"10.1038\/mp.2015.69","article-title":"Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group","volume":"21","author":"Schmaal","year":"2016","journal-title":"Mol. Psychiatry"},{"issue":"8","key":"10.1016\/j.neuroimage.2019.116450_bib41","doi-asserted-by":"crossref","first-page":"1501","DOI":"10.3174\/ajnr.A5254","article-title":"Volumetric analysis from a harmonized multisite brain MRI study of a single subject with multiple Sclerosis","volume":"38","author":"Shinohara","year":"2017","journal-title":"Am. J. Neuroradiol."},{"issue":"22","key":"10.1016\/j.neuroimage.2019.116450_bib42","doi-asserted-by":"crossref","first-page":"8819","DOI":"10.1523\/JNEUROSCI.21-22-08819.2001","article-title":"Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation","volume":"21","author":"Sowell","year":"2001","journal-title":"J.\u00a0Neurosci."},{"issue":"2","key":"10.1016\/j.neuroimage.2019.116450_bib43","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1002\/jmri.22636","article-title":"Effect of scanner in longitudinal studies of brain volume changes","volume":"32","author":"Takao","year":"2011","journal-title":"J.\u00a0Magn. Reson. Imaging"},{"issue":"3","key":"10.1016\/j.neuroimage.2019.116450_bib44","doi-asserted-by":"crossref","first-page":"534","DOI":"10.1093\/cercor\/bhp118","article-title":"Brain maturation in adolescence and Young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure","volume":"20","author":"Tamnes","year":"2010","journal-title":"Cerebr. Cortex"},{"issue":"2","key":"10.1016\/j.neuroimage.2019.116450_bib45","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1016\/j.neurobiolaging.2009.02.008","article-title":"Age-related gray matter volume changes in the brain during non-elderly adulthood","volume":"32","author":"Terribilli","year":"2011","journal-title":"Neurobiol. Aging"},{"issue":"2","key":"10.1016\/j.neuroimage.2019.116450_bib46","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/s11682-013-9269-5","article-title":"The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data","volume":"8","author":"Thompson","year":"2014","journal-title":"Brain Imag. Behav."},{"issue":"3","key":"10.1016\/j.neuroimage.2019.116450_bib47","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.tins.2006.01.007","article-title":"Mapping brain maturation","volume":"29","author":"Toga","year":"2006","journal-title":"Trends Neurosci."},{"issue":"6","key":"10.1016\/j.neuroimage.2019.116450_bib48","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1109\/TMI.2010.2046908","article-title":"N4ITK: improved N3 bias correction","volume":"29","author":"Tustison","year":"2010","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116450_bib49","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1038\/mp.2015.63","article-title":"Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 health controls via the ENIGMA consortium","volume":"21","author":"van Erp","year":"2016","journal-title":"Mol. Psychiatry"},{"issue":"2","key":"10.1016\/j.neuroimage.2019.116450_bib50","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1093\/ije\/dyp394","article-title":"Cohort profile: the study of health in Pomerania","volume":"40","author":"V\u00f6lzke","year":"2010","journal-title":"Int. J. Epidemiol."},{"issue":"9","key":"10.1016\/j.neuroimage.2019.116450_bib51","doi-asserted-by":"crossref","first-page":"1261","DOI":"10.1016\/j.neurobiolaging.2005.05.020","article-title":"Effects of age on volumes of cortex, white matter and subcortical structures","volume":"26","author":"Walhovd","year":"2005","journal-title":"Neurobiol. Aging"},{"issue":"5","key":"10.1016\/j.neuroimage.2019.116450_bib52","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1016\/j.neurobiolaging.2009.05.013","article-title":"Consistent neuroanatomical age-related volume differences across multiple scanners","volume":"32","author":"Walhovd","year":"2011","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.neuroimage.2019.116450_bib53","doi-asserted-by":"crossref","DOI":"10.1038\/sdata.2018.134","article-title":"Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset","volume":"5","author":"Wei","year":"2018","journal-title":"Sci. Data"},{"issue":"7","key":"10.1016\/j.neuroimage.2019.116450_bib54","doi-asserted-by":"crossref","first-page":"1777","DOI":"10.1093\/brain\/awm112","article-title":"3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer\u2019s disease","volume":"130","author":"Whitwell","year":"2007","journal-title":"Brain"},{"issue":"1","key":"10.1016\/j.neuroimage.2019.116450_bib55","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1111\/1467-9868.00374","article-title":"Thin plate regression splines","volume":"65","author":"Wood","year":"2003","journal-title":"J.\u00a0R. Stat. Ser. Soc. B Stat. Methodol."},{"year":"2017","series-title":"Generalized Additive Models: an Introduction with R","author":"Wood","key":"10.1016\/j.neuroimage.2019.116450_bib56"},{"key":"10.1016\/j.neuroimage.2019.116450_bib57","doi-asserted-by":"crossref","first-page":"4213","DOI":"10.1002\/hbm.24241","article-title":"Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data","volume":"39","author":"Yu","year":"2018","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2019.116450_bib58","doi-asserted-by":"crossref","first-page":"1398","DOI":"10.1016\/j.neuroimage.2011.02.010","article-title":"Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study","volume":"56","author":"Zhu","year":"2011","journal-title":"Neuroimage"},{"issue":"10","key":"10.1016\/j.neuroimage.2019.116450_bib59","doi-asserted-by":"crossref","first-page":"2377","DOI":"10.1002\/hbm.21374","article-title":"Brain structural trajectories over the adult lifespan","volume":"33","author":"Ziegler","year":"2012","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2019.116450_bib60","doi-asserted-by":"crossref","DOI":"10.1038\/sdata.2014.49","article-title":"An open science resource for establishing reliability and reproducability in functional connectomics","volume":"1","author":"Zuo","year":"2014","journal-title":"Sci. Data"},{"key":"10.1016\/j.neuroimage.2019.116450_bib61","doi-asserted-by":"crossref","first-page":"768","DOI":"10.1038\/s41562-019-0655-x","article-title":"Harnessing reliability for neuroscience research","volume":"3","author":"Zuo","year":"2019","journal-title":"Nat. Hum. Behav."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919310419?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919310419?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,11,18]],"date-time":"2022-11-18T06:04:46Z","timestamp":1668751486000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811919310419"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,3]]},"references-count":61,"alternative-id":["S1053811919310419"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.116450","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2020,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.116450","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 The Authors. Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"116450"}}