{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,24]],"date-time":"2025-04-24T19:05:15Z","timestamp":1745521515500,"version":"3.37.3"},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,11,11]],"date-time":"2019-11-11T00:00:00Z","timestamp":1573430400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000002","name":"NIH","doi-asserted-by":"publisher","award":["EB006733","MH117943"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1016\/j.neuroimage.2019.116329","type":"journal-article","created":{"date-parts":[[2019,11,3]],"date-time":"2019-11-03T04:28:51Z","timestamp":1572755331000},"page":"116329","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":60,"special_numbering":"C","title":["High-resolution 3D MR Fingerprinting using parallel imaging and deep learning"],"prefix":"10.1016","volume":"206","author":[{"given":"Yong","family":"Chen","sequence":"first","affiliation":[]},{"given":"Zhenghan","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Sheng-Che","family":"Hung","sequence":"additional","affiliation":[]},{"given":"Wei-Tang","family":"Chang","sequence":"additional","affiliation":[]},{"given":"Dinggang","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Weili","family":"Lin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2019.116329_bib1","first-page":"1","article-title":"Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging","author":"Ak\u00e7akaya","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib2","doi-asserted-by":"crossref","first-page":"492","DOI":"10.3174\/ajnr.A5035","article-title":"MR fingerprinting of adult brain tumors: initial experience","volume":"38","author":"Badve","year":"2017","journal-title":"Am. J. Neuroradiol."},{"key":"10.1016\/j.neuroimage.2019.116329_bib3","first-page":"1","article-title":"Fast 3D brain MR fingerprinting based on multi-axis spiral projection trajectory","author":"Cao","year":"2019","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib4","doi-asserted-by":"crossref","first-page":"782","DOI":"10.1016\/j.neuroimage.2018.11.038","article-title":"MR Fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in early brain development","volume":"186","author":"Chen","year":"2019","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116329_bib5","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1148\/radiol.2016152037","article-title":"MR fingerprinting for rapid quantitative abdominal imaging","volume":"279","author":"Chen","year":"2016","journal-title":"Radiology"},{"key":"10.1016\/j.neuroimage.2019.116329_bib6","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1097\/RLI.0000000000000135","article-title":"Free-breathing liver perfusion imaging using 3-dimensional through-time spiral generalized autocalibrating partially parallel acquisition acceleration","volume":"50","author":"Chen","year":"2015","journal-title":"Investig. Radiol."},{"key":"10.1016\/j.neuroimage.2019.116329_bib7","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1148\/radiol.2018180836","article-title":"3D magnetic resonance fingerprinting for quantitative breast imaging","volume":"290","author":"Chen","year":"2019","journal-title":"Radiology"},{"key":"10.1016\/j.neuroimage.2019.116329_bib8","doi-asserted-by":"crossref","first-page":"885","DOI":"10.1002\/mrm.27198","article-title":"MR fingerprinting deep RecOnstruction NEtwork (DRONE)","volume":"80","author":"Cohen","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib9","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1006\/nimg.2000.0601","article-title":"Optimization of 3-D MP-RAGE sequences for structural brain imaging","volume":"12","author":"Deichmann","year":"2000","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116329_bib10","doi-asserted-by":"crossref","first-page":"2188","DOI":"10.1002\/mrm.27201","article-title":"KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images","volume":"80","author":"Eo","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib11","doi-asserted-by":"crossref","DOI":"10.1109\/TMI.2019.2899328","article-title":"Deep learning for fast and spatially-constrained tissue quantification from highly-accelerated data in magnetic resonance fingerprinting","author":"Fang","year":"2019","journal-title":"IEEE Trans. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib12","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1016\/S0896-6273(02)00569-X","article-title":"Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain","volume":"33","author":"Fischl","year":"2002","journal-title":"Neuron"},{"key":"10.1016\/j.neuroimage.2019.116329_bib13","doi-asserted-by":"crossref","first-page":"1446","DOI":"10.1002\/mrm.26216","article-title":"MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density","volume":"77","author":"Hamilton","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib14","doi-asserted-by":"crossref","first-page":"3055","DOI":"10.1002\/mrm.26977","article-title":"Learning a variational network for reconstruction of accelerated MRI data","volume":"79","author":"Hammernik","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib15","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.neuroimage.2019.01.034","article-title":"Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain","volume":"189","author":"Heo","year":"2019","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116329_bib16","article-title":"Deep learning for Magnetic Resonance Fingerprinting: accelerating the reconstruction of quantitative relaxation maps","volume":"p2791","author":"Hoppe","year":"2018","journal-title":"Int. Soc. Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib17","first-page":"202","article-title":"Deep learning for magnetic resonance fingerprinting: a new approach for predicting quantitative parameter values from time series","volume":"243","author":"Hoppe","year":"2017","journal-title":"Stud. Health Technol. Inform."},{"key":"10.1016\/j.neuroimage.2019.116329_bib18","doi-asserted-by":"crossref","first-page":"1621","DOI":"10.1002\/mrm.25559","article-title":"MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout","volume":"74","author":"Jiang","year":"2015","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib19","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1148\/radiol.2019182360","article-title":"Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain","volume":"292","author":"K\u00f6rzd\u00f6rfer","year":"2019","journal-title":"Radiology"},{"key":"10.1016\/j.neuroimage.2019.116329_bib20","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.neuroimage.2017.08.030","article-title":"3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction","volume":"162","author":"Liao","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116329_bib21","doi-asserted-by":"crossref","first-page":"804","DOI":"10.1148\/radiol.2018172131","article-title":"Detection of lesions in mesial temporal lobe epilepsy by using MR fingerprinting","volume":"288","author":"Liao","year":"2018","journal-title":"Radiology"},{"key":"10.1016\/j.neuroimage.2019.116329_bib22","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1038\/nature11971","article-title":"Magnetic resonance fingerprinting","volume":"495","author":"Ma","year":"2013","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2019.116329_bib23","doi-asserted-by":"crossref","first-page":"2190","DOI":"10.1002\/mrm.26886","article-title":"Fast 3D magnetic resonance fingerprinting for a whole-brain coverage","volume":"79","author":"Ma","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib24","doi-asserted-by":"crossref","first-page":"1333","DOI":"10.1002\/jmri.26319","article-title":"Development of high-resolution 3D MR fingerprinting for detection and characterization of epileptic lesions","volume":"49","author":"Ma","year":"2019","journal-title":"J.\u00a0Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116329_bib25","first-page":"1","article-title":"SVD compression for magnetic resonance fingerprinting in the time domain","volume":"0062","author":"McGivney","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116329_bib26","doi-asserted-by":"crossref","first-page":"2485","DOI":"10.1002\/mrm.27227","article-title":"Image reconstruction algorithm for motion insensitive MR Fingerprinting (MRF): MORF","volume":"80","author":"Mehta","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib27","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1002\/mrm.25776","article-title":"Multiscale reconstruction for magnetic resonance fingerprinting","volume":"75","author":"Pierre","year":"2016","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib28","doi-asserted-by":"crossref","first-page":"1488","DOI":"10.1109\/TMI.2018.2820120","article-title":"Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss","volume":"37","author":"Quan","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116329_bib29","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1109\/TMI.2017.2760978","article-title":"A\u00a0deep cascade of convolutional neural networks for dynamic MR image reconstruction","volume":"37","author":"Schlemper","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116329_bib30","doi-asserted-by":"crossref","first-page":"1682","DOI":"10.1002\/mrm.22952","article-title":"Improved temporal resolution in cardiac imaging using through-time spiral GRAPPA","volume":"66","author":"Seiberlich","year":"2011","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib31","doi-asserted-by":"crossref","first-page":"1849","DOI":"10.1002\/mrm.27543","article-title":"Magnetic resonance fingerprinting with quadratic RF phase for measurement of T 2 * simultaneously with \u03b4 f , T 1 , and T 2","volume":"81","author":"Wang","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116329_bib32","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.mri.2018.03.011","article-title":"Estimation of perfusion properties with MR fingerprinting arterial spin labeling","volume":"50","author":"Wright","year":"2018","journal-title":"Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116329_bib33","doi-asserted-by":"crossref","first-page":"729","DOI":"10.1148\/radiol.2017161599","article-title":"Development of a combined MR fingerprinting and diffusion examination for prostate","volume":"283","author":"Yu","year":"2017","journal-title":"Radiology"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919309206?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919309206?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,7,10]],"date-time":"2020-07-10T14:46:32Z","timestamp":1594392392000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811919309206"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2]]},"references-count":33,"alternative-id":["S1053811919309206"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.116329","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2020,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"High-resolution 3D MR Fingerprinting using parallel imaging and deep learning","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.116329","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 The Authors. Published by Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"116329"}}